
Linux flash file systems
JFFS2 vs UBIFS

Chris Simmonds
2net Limited

Embedded Systems Conference UK. 2009

Copyright © 2009, 2net Limited



2Chris Simmonds 2net Ltd

Overview

 Many embedded systems use raw flash chips
 JFFS2 has been the main choice for almost 10 

years
 As flash sizes increase the scalability problems 

of JFFS2 become more obvious
 UBIFS is being talked about as the next flash 

file system
 How does it compare?



3Chris Simmonds 2net Ltd

Types of flash memory

NOR NAND

Erase block
e.g. 128 KiB

Page
e.g. 2112 B

Out Of Band
area (64 B)

Erase block
e.g. 128 KiB

Data area
(2048 B)

Max erase cycles: 100K to 1M
per erase block

Max erase cycles: 10K to 100K
per erase block



4Chris Simmonds 2net Ltd

NAND flash

 Bit errors
 Need ECC stored in OOB area to detect & correct
 ECC may be handled in hardware or software

 Bad blocks
 Up to 2% erase blocks bad in new chips
 Blocks may go bad during normal operation
 Bad block marked with a flag on OOB

 Multi-Level Cell (MLC) NAND
 High storage density; high bit error rate; few erase 

cycles (10 K)



5Chris Simmonds 2net Ltd

Flash translation layers

 Sub allocation within erase block
 Garbage collection to coalesce & free obsolete 

data
 Wear leveling
 Bad block handling (NAND)

 Includes ECC generation & checking

 Avoid data corruption when powered down



6Chris Simmonds 2net Ltd

Commodity flash devices

 For example SD, Compact Flash, USB storage
 Flash translation layer implemented in firmware 

on the device
 Appears to operating system like a hard drive

 Very limited reliability data from manufacturers
 Some have known problems with wear leveling and 

corruption at power off

 Alternative: use raw flash with translation in the 
file system
 That is what JFFS2 and UBIFS do!



7Chris Simmonds 2net Ltd

Flash file systems

JFFS2

MTD

UBI

MTD

UBIFS

Raw flash Raw flash



8Chris Simmonds 2net Ltd

Memory Technology Device layer

MTD core

NOR SLC NAND MLC NAND

Character
/dev/mtd

Block dev
/dev/mtdblock

  MTD is the lowest level for accessing flash chips
  Presents flash as one or more partitions of erase blocks



9Chris Simmonds 2net Ltd

JFFS2

MTD
partition Free erase blocks

Data nodes Summary node

Erase block

Used erase blocks

   File data and meta data stored as nodes

   No index stored on-chip: have to re-create from 

summary nodes at mount: mount is slow

   Bad block handling (NAND)

   Optional data compression - zlib default



10Chris Simmonds 2net Ltd

UBI

 UBI = Unsorted Block Image
 Maps Physical Erase Blocks in an MTD partition 

to Logical Erase Blocks
 Adds

 Bad block handling
 Volumes
 Wear leveling within a volume

 Introduced in Linux 2.6.22



11Chris Simmonds 2net Ltd

UBI - erase block mapping

MTD partition
PEBs

UBI: LEBs

Bad block

Vol 1 Vol 2

PEB = Physical Erase Block
LEB = Logical Erase Block



12Chris Simmonds 2net Ltd

UBIFS
 Journal

 Robust on power fail

 Write-back cache
 Faster writes (see next slide)

 On-chip index
 Fast mount

 Compression: lzo or zlib
 More data on your chip!

 Introduced in Linux 2.6.27



13Chris Simmonds 2net Ltd

Consequences of write-back cache

 Write-through cache (e.g. JFFS2)
 All writes are synchronous

 Write-back cache
 Writes are completed later by pdflush daemon

 To avoid loss of data need to do one of
 Call fsync() after critical writes
 Open files with O_SYNC flag
 Mount ubifs with -o sync



14Chris Simmonds 2net Ltd

Device used for testing

 ARM 926 SoC @ 155 Mhz
 64 MiB RAM
 1 x 1Gib (128 MiB) ST/Numonyx NAND flash

 128 KiB erase block
 2 KiB page
 Software ECC
 Programmed i/o

 2.6.27 kernel



15Chris Simmonds 2net Ltd

Write test

 Write 10 MiB random data in block sizes 4KiB, 
64KiB and 1MiB to
 Raw device: /dev/mtdblock5
 JFFS2 file
 UBIFS file

 Write 10 MiB zeros to
 JFFS2 file
 UBIFS file



16Chris Simmonds 2net Ltd

Write speed

4K 64KB 1MB
0.000

1.000

2.000

3.000

4.000

5.000

6.000

raw
JFFS2/rnd
JFFS2/zero
UBIFS/rnd
UBIFS/zero

M
B

/s



17Chris Simmonds 2net Ltd

Write speed conclusions

 Raw speed is 0.7 MiB/s
 JFFS2

 Random data: 0.2 MiB/s
− Compression slows it down

 Zeros: 0.7 MiB/s
− Compression fast, approaches raw speed

 UBIFS
 Random data: 0.8 MiB/s
 Zeros: 5 MiB/s

− Write-back cache speeds up in both cases



18Chris Simmonds 2net Ltd

Read speed test

 Read 10 MiB random data in block sizes 4KiB, 
64KiB and 1MiB from
 Raw device: /dev/mtdblock5
 JFFS2 file
 UBIFS file

 Measure JFFS2 and UBIFS times
 Immediately after mount (no data cached)
 Again, with cache fully primed



19Chris Simmonds 2net Ltd

Read speed results

4K 64KB 1MB
0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

raw
JFFS2 first
JFFS2 again
UBIFS first
UBIFS again

M
iB

/s



20Chris Simmonds 2net Ltd

Read speed conclusions

 Raw speed: 1.1 MiB/s
 Immediately after mount

 JFFS2: 0.87 MiB/s
 UBIFS: 1.0 MiB/s

 Subsequently
 Both ~15 MiB/s

 Not much difference between JFFS2 and UBIFS



21Chris Simmonds 2net Ltd

Mount time

 Mount a file system containing
 No files
 10 files of 8MiB (partition 80% full)
 10,000 files of 8KiB (partition 80% full)



22Chris Simmonds 2net Ltd

Mount speed

JFFS2 UBIFS
0

5

10

15

20

25

30

35

Mount time

empty
large files
small files

S
ec

on
ds



23Chris Simmonds 2net Ltd

Mount time conclusions

 UBIFS mount time is constant at 0.5s
 JFFS2 mount time increases dramatically

 Empty: 1.98s
 10K small files: 30s

 The JFFS2 garbage collector thread runs for up 
to 90s after mount
 Some file operations (e.g. ls *) will be blocked until 

it completes



24Chris Simmonds 2net Ltd

Space efficiency

JFFS2 % overhead UBIFS % overhead
106624 2.46% 98004 11.54%

Empty partition with initial size 109312 blocks of 1 KiB

Space taken by a file containing 1 MiB random data when 
written many small pieces and one large piece

JFFS2 UBIFS
Write size Blocks used % overhead Blocks used % overhead
16 bytes 1468 43.36% 1364 33.20%
1MiB 1048 2.34% 1365 33.30%



25Chris Simmonds 2net Ltd

Summary

 UBIFS is faster than JFFS2 in all cases
 Overwhelmingly so during mount

 JFFS2 makes more efficient use of space
 Conclusion:

 Use JFFS2 on small partitions (< 16 MiB)
 Use UBIFS in other cases



26Chris Simmonds 2net Ltd

References

 The Linux MTD, JFFS2 and UBI project
 http://www.linux-mtd.infradead.org/index.html


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

