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Overview

 Many embedded systems use raw flash chips
 JFFS2 has been the main choice for almost 10 

years
 As flash sizes increase the scalability problems 

of JFFS2 become more obvious
 UBIFS is being talked about as the next flash 

file system
 How does it compare?
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Types of flash memory

NOR NAND

Erase block
e.g. 128 KiB

Page
e.g. 2112 B

Out Of Band
area (64 B)

Erase block
e.g. 128 KiB

Data area
(2048 B)

Max erase cycles: 100K to 1M
per erase block

Max erase cycles: 10K to 100K
per erase block
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NAND flash

 Bit errors
 Need ECC stored in OOB area to detect & correct
 ECC may be handled in hardware or software

 Bad blocks
 Up to 2% erase blocks bad in new chips
 Blocks may go bad during normal operation
 Bad block marked with a flag on OOB

 Multi-Level Cell (MLC) NAND
 High storage density; high bit error rate; few erase 

cycles (10 K)
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Flash translation layers

 Sub allocation within erase block
 Garbage collection to coalesce & free obsolete 

data
 Wear leveling
 Bad block handling (NAND)

 Includes ECC generation & checking

 Avoid data corruption when powered down
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Commodity flash devices

 For example SD, Compact Flash, USB storage
 Flash translation layer implemented in firmware 

on the device
 Appears to operating system like a hard drive

 Very limited reliability data from manufacturers
 Some have known problems with wear leveling and 

corruption at power off

 Alternative: use raw flash with translation in the 
file system
 That is what JFFS2 and UBIFS do!
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Flash file systems

JFFS2

MTD

UBI

MTD

UBIFS

Raw flash Raw flash
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Memory Technology Device layer

MTD core

NOR SLC NAND MLC NAND

Character
/dev/mtd

Block dev
/dev/mtdblock

  MTD is the lowest level for accessing flash chips
  Presents flash as one or more partitions of erase blocks
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JFFS2

MTD
partition Free erase blocks

Data nodes Summary node

Erase block

Used erase blocks

   File data and meta data stored as nodes

   No index stored on-chip: have to re-create from 

summary nodes at mount: mount is slow

   Bad block handling (NAND)

   Optional data compression - zlib default
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UBI

 UBI = Unsorted Block Image
 Maps Physical Erase Blocks in an MTD partition 

to Logical Erase Blocks
 Adds

 Bad block handling
 Volumes
 Wear leveling within a volume

 Introduced in Linux 2.6.22
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UBI - erase block mapping

MTD partition
PEBs

UBI: LEBs

Bad block

Vol 1 Vol 2

PEB = Physical Erase Block
LEB = Logical Erase Block
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UBIFS
 Journal

 Robust on power fail

 Write-back cache
 Faster writes (see next slide)

 On-chip index
 Fast mount

 Compression: lzo or zlib
 More data on your chip!

 Introduced in Linux 2.6.27
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Consequences of write-back cache

 Write-through cache (e.g. JFFS2)
 All writes are synchronous

 Write-back cache
 Writes are completed later by pdflush daemon

 To avoid loss of data need to do one of
 Call fsync() after critical writes
 Open files with O_SYNC flag
 Mount ubifs with -o sync
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Device used for testing

 ARM 926 SoC @ 155 Mhz
 64 MiB RAM
 1 x 1Gib (128 MiB) ST/Numonyx NAND flash

 128 KiB erase block
 2 KiB page
 Software ECC
 Programmed i/o

 2.6.27 kernel



15Chris Simmonds 2net Ltd

Write test

 Write 10 MiB random data in block sizes 4KiB, 
64KiB and 1MiB to
 Raw device: /dev/mtdblock5
 JFFS2 file
 UBIFS file

 Write 10 MiB zeros to
 JFFS2 file
 UBIFS file
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Write speed

4K 64KB 1MB
0.000

1.000

2.000

3.000

4.000

5.000

6.000

raw
JFFS2/rnd
JFFS2/zero
UBIFS/rnd
UBIFS/zero

M
B

/s
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Write speed conclusions

 Raw speed is 0.7 MiB/s
 JFFS2

 Random data: 0.2 MiB/s
− Compression slows it down

 Zeros: 0.7 MiB/s
− Compression fast, approaches raw speed

 UBIFS
 Random data: 0.8 MiB/s
 Zeros: 5 MiB/s

− Write-back cache speeds up in both cases
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Read speed test

 Read 10 MiB random data in block sizes 4KiB, 
64KiB and 1MiB from
 Raw device: /dev/mtdblock5
 JFFS2 file
 UBIFS file

 Measure JFFS2 and UBIFS times
 Immediately after mount (no data cached)
 Again, with cache fully primed
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Read speed results

4K 64KB 1MB
0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

raw
JFFS2 first
JFFS2 again
UBIFS first
UBIFS again

M
iB

/s
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Read speed conclusions

 Raw speed: 1.1 MiB/s
 Immediately after mount

 JFFS2: 0.87 MiB/s
 UBIFS: 1.0 MiB/s

 Subsequently
 Both ~15 MiB/s

 Not much difference between JFFS2 and UBIFS
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Mount time

 Mount a file system containing
 No files
 10 files of 8MiB (partition 80% full)
 10,000 files of 8KiB (partition 80% full)
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Mount speed

JFFS2 UBIFS
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Mount time conclusions

 UBIFS mount time is constant at 0.5s
 JFFS2 mount time increases dramatically

 Empty: 1.98s
 10K small files: 30s

 The JFFS2 garbage collector thread runs for up 
to 90s after mount
 Some file operations (e.g. ls *) will be blocked until 

it completes
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Space efficiency

JFFS2 % overhead UBIFS % overhead
106624 2.46% 98004 11.54%

Empty partition with initial size 109312 blocks of 1 KiB

Space taken by a file containing 1 MiB random data when 
written many small pieces and one large piece

JFFS2 UBIFS
Write size Blocks used % overhead Blocks used % overhead
16 bytes 1468 43.36% 1364 33.20%
1MiB 1048 2.34% 1365 33.30%
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Summary

 UBIFS is faster than JFFS2 in all cases
 Overwhelmingly so during mount

 JFFS2 makes more efficient use of space
 Conclusion:

 Use JFFS2 on small partitions (< 16 MiB)
 Use UBIFS in other cases
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References

 The Linux MTD, JFFS2 and UBI project
 http://www.linux-mtd.infradead.org/index.html
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