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Abstract—Modern  Linux  kernels  provide  interfaces  that
allow you to control hardware directly from an application, thus
avoiding the need to write kernel device drivers. Beginning with
the most basic interface of all, GPIO (General Purpose I/O), you
can configure individual pins as inputs or outputs and then access
them as special  files.  If  the hardware is  capable of  generating
interrupts on the GPIO inputs you can make use of that to write
interrupt-driven functions.

Likewise,  the  PWM  (Pulse  Width  Modulation)  interface
allows you to make use of PWM hardware designed into most
SoCs,  allowing  you  to  generate  pulse  trains  to  control  lights,
motors and more. Finally, when it comes to I2C devices, Linux
provides a device node for each controller and a set of operations
to read and write each slave device on the bus.

By  using  these  interfaces  you  can  control  hardware  and
access a range of sensors from the safe and simple environment of
your  application,  written  in  C,  C++,  Perl,  Python  or  another
language of your choice. 
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I.  INTRODUCTION

In  Linux-based  operating  systems  there  is  a  distinction
between  device  drivers  and  applications.  Device  drivers  are
part of the kernel and operate in at a high privilege level which
allows them to access hardware registers, service interrupts and
so on. They implement an interface that allows an application
to call and interact with the device driver. A good example is
the  serial  port  driver.  The  device  driver  interfaces  with  a
UART  (Universal  Asynchronous  Receiver/Transmitter)  and
uses it to send and receive characters using RS-232 or a similar
protocol. The driver implements an application-level interface
in the form of a device node, which for a PC would have a
name of the form /dev/ttyS0. An application can open this
file and use the POSIX read(2) and write(2) functions to read
characters from and send characters to the serial interface.

Following this model, each new piece of hardware requires
a kernel device driver to control it and an application to make

use of the basic I/O functions that the driver provides. Writing
kernel code is complex and difficult to debug.

An alternative approach is to create general purpose device
drivers that can handle a whole class of hardware and allow
most  of  the  logic  required  to  control  the  hardware  to  be
implemented in the application. These are often referred to as
user-space device drivers.

There are several good guides to these interfaces available,
including Mastering Embedded Linux Programming [1]. This
paper focuses on three such interfaces: GPIO, PWM and I2C.
They  are  generally  easier  to  write  and  so  allow  for  rapid
prototyping of new hardware.

II. GPIO

Most embedded SoCs have a number of  GPIO (General
Purpose I/O) pins that can be used to control digital interfaces.
Most SoC designs include several registers that control GPIO
pins, usually in groups of 32. In addition, there are I/O extender
chips, such as the MAX7313 from Maxim or the MPC23017
from Microchip. These particular devices are attached via the
I2C bus,  but  that  is  a  detail  that  is  hidden  in  the  interface
described here. In most cases, GPIO pins can be configured as
inputs or outputs or and in the former case,  may be able to
generate an interrupt when the input state changes.

GPIOs can be used to control digital outputs like LEDs and
relays, and be be used to read digital inputs from push buttons,
keypads and similar devices. It is also possible to use a group
of GPIO pins to implement a more complex interface, such as a
serial  interface,  a  process  that  it  known as  bit-banging.  The
kernel driver that allows access to GPIO from applications is
enabled  by  building  the  kernel  with  CONFIG_GPIO_SYSFS:
almost all embedded platforms are build with this turned on.

The GPIO pins available from the registers and extender
chips  are  numbered  from  0  to  N.  Each  register  or  chip  is
assigned a base GPIO number in that range. The allocations are
visible  through directories  in  /sys/class/gpio.  This  is  a
typical example:

# ls /sys/class/gpio 
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export gpiochip0 gpiochip32 gpiochip64 
gpiochip96 unexport

In this case there are four chips with base GPIO numbers 0,
32, 64 and 96, providing a total of 128 GPIO pins Within each
directory are these files:

# ls /sys/class/gpio/gpiochip0/ 
base label ngpio power subsystem uevent

There are three files that are important here:

• base – the base GPIO number, which is also reflected
in the name of the directory

• label – a name for the register or chip

• ngpio – the number of GPIO pins in this register or
chip

Initially all GPIO pins are controlled by the kernel.  To gain
access to a GPIO from  user-space, it is necessary to write the
number of the GPIO to the file  /sys/class/goio/export.
If the export succeeds, meaning that the pin is not being used
by a kernel   driver, then a  new directory is  created which
contains  files  necessary  to  interact  with  it.  For  example,  to
export GPIO pin 48 you would:

# echo 48 > /sys/class/gpio/export 
# ls /sys/class/gpio 
export gpio48 gpiochip0 gpiochip32 gpiochip64 
gpiochip96 unexport 

A new directory named  gpio48 has been created. Within
that are these files:

# ls /sys/class/gpio/gpio48 
active_low direction edge power subsystem 
uevent value

Reading  the  file  direction returns  the  string  “in”  or
“out”, indicating whether it is an input or an output. Initially all
GPIOs are inputs. To change the direction, write “out” or “in”
to direction.

The file value represents the level of the pin, which can be
“0” or “1”. For inputs, reading this file returns the level of the
input; for outputs writing to this file to sets the level of the
output. The file  active_low changes the polarity of the pin so
that a high level represents 0 and a low level represents 1. 

If  the  GPIO  can  generate  an  interrupt  when  the  input
changes state, the file  edge will be present. It can contain the
following strings:

• none - no interrupts generated (the default)

• rising - Interrupt on rising edge

• falling - Interrupt on falling edge

• both - Interrupt on both edges

If interrupts are enabled an application can wait for a state
change on the input using the POSIX poll(2) function to wait
for a  POLLPRI or  POLLERR event. Here is a sample program,
taken from [1]:

#include <stdio.h> 
#include <unistd.h> 

#include <sys/types.h> 
#include <sys/stat.h> 
#include <fcntl.h> 
#include <poll.h> 

int main (int argc, char *argv[]) 
{ 
    int f; 
    struct pollfd poll_fds [1]; 
    int ret; 
    char value[4]; 
    int n; 

    f = open("/sys/class/gpio/gpio48",
             O_RDONLY); 
    if (f == -1) { 
        perror("Can't open gpio48"); 
        return 1; 
    } 
    poll_fds[0].fd = f; 
    poll_fds[0].events = POLLPRI | POLLERR; 
    while (1) { 
        printf("Waiting\n"); 
        ret = poll(poll_fds, 1, -1); 
        if (ret > 0) { 
            n = read(f, &value,
                     sizeof(value)); 
            printf("Button pressed\n"); 
        } 
    } 

    return 0; 
} 

Since the interface is implemented entirely using file reads
writes, it can be used by any language that provides and API to
access the file system.

III. PWM

PWM (Pulse-Width Modulation) is  a mechanism used to
drive  a  circuit  at  different  levels  using  a  digital  output  by
rapidly  pulsing  it  on  and  off.  By  varying  the  “on”  time
compared  to  the  “off”  time  a  range  of  drive  levels  can  be
achieved. PWM is often used to control the brightness of LCD
backlights, LEDs and other light sources, to control the speed
of small DC motors and other similar devices. It is possible to
generate a PWM signal using a GPIO pin and software to turn
it on and off,  but this is very inefficient  in CPU cycles and
consequent  power  demand.  Many  SoCs  implement  PWM
interfaces that can perform the switching entirely in hardware,
and there are PWM interfaces on some I/O extender chips.

The design of the PWM application interface is similar to
the GPIO driver [2]. Each PWM interface is exposed through
subdirectories in /sys/class/pwm. For each PWM controller
there is a directory named pwmchipN, where N is the numeric
identifier of the interface, usually starting from 0. For example:

# ls /sys/class/pwm/

export pwmchip0 pwmchip2 pwmchip3 pwmchip5
pwmchip7 unexport

Ini this instance there are five PWM interfaces. In addition,
there are files named export and unexport. As with GPIO,



you  write  the  interface  number  to  which  you want  to  gain
access to export, and when you no longer need the interface
you write the interface number to unexport to return it to the
kernel. For example, to obtain access to interface pwm3, you
would do this;

# echo 3 > /sys/class/pwm/export
# ls /sys/class/pwm/
export pwm3 pwmchip0 pwmchip2 pwmchip3 
pwmchip5 pwmchip7 unexport

Note that directory pwm3 has been created. Within that are
these files:

# ls /sys/class/pwm/pwm3/
device duty_ns period_ns polarity power run 
subsystem uevent

The files that control the PWM are as follows:

• duty_cycle_ns - The active time of the PWM
signal  in  nanoseconds. It  must  be less than
the period.

• period_ns -  The  total  period  of  the  PWM
signal in nanoseconds. This is the sum of the
active and inactive time of the PWM. 

• polarity –  Sets  the  polarity  of  the  PWM
signal.  Writes to this property only work if
the PWM chip supports changing the polarity.
The polarity can only be changed if the PWM
is  not  enabled.  It  may  be  "normal"  or
"inversed". 

• run – Enable the PWM by writing “1” and
disable by writing “0”

As an example, assume that you want to program the PWM
interface to a frequency of 1000Hz, and a duty cycle of 25%.
The period is 1 millisecond, which is 1000000 nanoseconds,
and  the  duty  cycle  is  0.25  milliseconds,  or  250000
nanoseconds,  so  this  sequence  of  commands  would  be
necessary:

# echo 1000000 > \ 
/sys/class/pwm/pwm3/period_ns
# echo 250000 > \ /sys/class/pwm/pwm3/duty_ns
# echo 1 > /sys/class/pwm/pwm3/run

As with GPIO, the interface consists entirely of file reads
and writes and so is easy to implement in most languages.

IV. I2C

I2C stands for Inter-Integrated Circuit [3]. It is a simple low
speed  2-wire  bus  that  is  common  on  embedded  boards,
typically used to access peripherals which are not on the SoC
itself.  Example  usage  includes  display  controllers,  camera
sensors, GPIO extenders, and temperature sensors. There is a
related standard known as SMBus (System Management Bus)
that is found on PCs. SMBus is a subset of I2C.

I2C is a master-slave protocol, with the master being a host
controller on  the SoC. Slaves have a 7-bit address assigned by
the manufacturer, which you can discover by reading the data
sheet.  This  allows for  up to  128 nodes  per  bus,  but  16 are
reserved, so only 112 nodes are allowed in practice. The bus
speed is 100 KHz in standard mode, or up to 400 KHz in fast

mode. The protocol allows read and write transactions between
the master and slave of up to 32 bytes. Frequently, the first byte
is used to specify a register on the peripheral and the remaining
bytes are the data read from or written to that register.

There  is  a  kernel  driver  that  allows  you  to  access  i2c
devices  from user-space.  You have  to  build  the kernel  with
option CONFIG_I2C_CHARDEV enabled. If it is built as a kernel
module,  you will  have to load module i2c-dev.ko. That  will
create a device node for each i2c host adapter. For example:

# ls -l /dev/i2c*

crw-rw---- 1 root i2c 89, 0 Jan  1 00:18
/dev/i2c-0

crw-rw---- 1 root i2c 89, 1 Jan  1 00:18
/dev/i2c-1

crw-rw---- 1 root i2c 89, 2 Jan  1 00:18
/dev/i2c-2

crw-rw---- 1 root i2c 89, 3 Jan  1 00:18
/dev/i2c-3

You can perform some simple actions using the command-
line tools in the package i2ctools. The tools are:

• i2cdetect - lists i2c adapters and probe bus

• i2cdump -  dump data  from all  registers  of  an  I2C
peripheral (warning: dangerous!!)

• i2cget - read data from an I2C device

• i2cget <bus> <chip> <register>

• i2cset - write data to an I2C device

• i2cset <bus> <chip> <register> <value>

The programming interface for I2C is based on the POSIX
ioctl(2)  function.  Unfortunately,  ioctl  represents  input  and
output  parameters  as  structures  and  passes  a  pointer  to  the
structure. This makes it difficult to write code to access the I2C
peripherals in any language other than C or C++. Here is an
example program, once again taken from [1]:

#include <i2c-dev.h>
#include <sys/ioctl.h>

#define I2C_ADDRESS 0x5d
#define CHIP_REVISION_REG 0x10

main ()
{

int f_i2c;
int val;

/* Open the adapter and set the address
   of the I2C device */
f_i2c = open ("/dev/i2c-1", O_RDWR);
ioctl (f_i2c, I2C_SLAVE, I2C_ADDRESS);

/* Read 16-bits of data from a
   register */
val = i2c_smbus_read_word_data (f,

CHIP_REVISION_REG);
printf (“Sensor chip revision %d\n”,

val);
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close (f);
}

To access I2C and SMBus from Python you can use smbus-
cffi [4].

V. CONCLUSION

This  paper  has  presented  three  general  purpose  Linux
kernel drivers that allow a considerable portion of the interface
logic to be implementing in user-space, thus avoiding the need
to write complex kernel device drivers for a wide range of real-
world  cases.  In  addition  to  these  interfaces,  the  interested
reader  could  also  explore  accessing  USB  peripherals  using
libusb [5].

I will finish by mentioning that there is a hybrid approach
using  a  Linux  sub-system  called  User  I/O,  or  UIO.  This

requires a simple device driver to be written, but retains most
of  the  logic  in  user  space.  Using  it,  you  can  write  more
complex  drivers  that  can  handle  interrupts  and  even  DMA
transfers.  The details  are too complex to describe here.  It  is
described in the Linux kernel documentation [6].
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