
How to avoid writing device drivers for embedded
Linux

Chris Simmonds
2net Limited

Winchester, UK
chris@2net.co.uk

Abstract—Modern Linux kernels provide interfaces that
allow you to control hardware directly from an application, thus
avoiding the need to write kernel device drivers. Beginning with
the most basic interface of all, GPIO (General Purpose I/O), you
can configure individual pins as inputs or outputs and then access
them as special files. If the hardware is capable of generating
interrupts on the GPIO inputs you can make use of that to write
interrupt-driven functions.

Likewise, the PWM (Pulse Width Modulation) interface
allows you to make use of PWM hardware designed into most
SoCs, allowing you to generate pulse trains to control lights,
motors and more. Finally, when it comes to I2C devices, Linux
provides a device node for each controller and a set of operations
to read and write each slave device on the bus.

By using these interfaces you can control hardware and
access a range of sensors from the safe and simple environment of
your application, written in C, C++, Perl, Python or another
language of your choice.

Keywords—Linux, User-space drivers, GPIO, PWM, i2c

I. INTRODUCTION

In Linux-based operating systems there is a distinction
between device drivers and applications. Device drivers are
part of the kernel and operate in at a high privilege level which
allows them to access hardware registers, service interrupts and
so on. They implement an interface that allows an application
to call and interact with the device driver. A good example is
the serial port driver. The device driver interfaces with a
UART (Universal Asynchronous Receiver/Transmitter) and
uses it to send and receive characters using RS-232 or a similar
protocol. The driver implements an application-level interface
in the form of a device node, which for a PC would have a
name of the form /dev/ttyS0. An application can open this
file and use the POSIX read(2) and write(2) functions to read
characters from and send characters to the serial interface.

Following this model, each new piece of hardware requires
a kernel device driver to control it and an application to make

use of the basic I/O functions that the driver provides. Writing
kernel code is complex and difficult to debug.

An alternative approach is to create general purpose device
drivers that can handle a whole class of hardware and allow
most of the logic required to control the hardware to be
implemented in the application. These are often referred to as
user-space device drivers.

There are several good guides to these interfaces available,
including Mastering Embedded Linux Programming [1]. This
paper focuses on three such interfaces: GPIO, PWM and I2C.
They are generally easier to write and so allow for rapid
prototyping of new hardware.

II. GPIO

Most embedded SoCs have a number of GPIO (General
Purpose I/O) pins that can be used to control digital interfaces.
Most SoC designs include several registers that control GPIO
pins, usually in groups of 32. In addition, there are I/O extender
chips, such as the MAX7313 from Maxim or the MPC23017
from Microchip. These particular devices are attached via the
I2C bus, but that is a detail that is hidden in the interface
described here. In most cases, GPIO pins can be configured as
inputs or outputs or and in the former case, may be able to
generate an interrupt when the input state changes.

GPIOs can be used to control digital outputs like LEDs and
relays, and be be used to read digital inputs from push buttons,
keypads and similar devices. It is also possible to use a group
of GPIO pins to implement a more complex interface, such as a
serial interface, a process that it known as bit-banging. The
kernel driver that allows access to GPIO from applications is
enabled by building the kernel with CONFIG_GPIO_SYSFS:
almost all embedded platforms are build with this turned on.

The GPIO pins available from the registers and extender
chips are numbered from 0 to N. Each register or chip is
assigned a base GPIO number in that range. The allocations are
visible through directories in /sys/class/gpio. This is a
typical example:

ls /sys/class/gpio

www.embedded-world.eu

export gpiochip0 gpiochip32 gpiochip64
gpiochip96 unexport

In this case there are four chips with base GPIO numbers 0,
32, 64 and 96, providing a total of 128 GPIO pins Within each
directory are these files:

ls /sys/class/gpio/gpiochip0/
base label ngpio power subsystem uevent

There are three files that are important here:

• base – the base GPIO number, which is also reflected
in the name of the directory

• label – a name for the register or chip

• ngpio – the number of GPIO pins in this register or
chip

Initially all GPIO pins are controlled by the kernel. To gain
access to a GPIO from user-space, it is necessary to write the
number of the GPIO to the file /sys/class/goio/export.
If the export succeeds, meaning that the pin is not being used
by a kernel driver, then a new directory is created which
contains files necessary to interact with it. For example, to
export GPIO pin 48 you would:

echo 48 > /sys/class/gpio/export
ls /sys/class/gpio
export gpio48 gpiochip0 gpiochip32 gpiochip64
gpiochip96 unexport

A new directory named gpio48 has been created. Within
that are these files:

ls /sys/class/gpio/gpio48
active_low direction edge power subsystem
uevent value

Reading the file direction returns the string “in” or
“out”, indicating whether it is an input or an output. Initially all
GPIOs are inputs. To change the direction, write “out” or “in”
to direction.

The file value represents the level of the pin, which can be
“0” or “1”. For inputs, reading this file returns the level of the
input; for outputs writing to this file to sets the level of the
output. The file active_low changes the polarity of the pin so
that a high level represents 0 and a low level represents 1.

If the GPIO can generate an interrupt when the input
changes state, the file edge will be present. It can contain the
following strings:

• none - no interrupts generated (the default)

• rising - Interrupt on rising edge

• falling - Interrupt on falling edge

• both - Interrupt on both edges

If interrupts are enabled an application can wait for a state
change on the input using the POSIX poll(2) function to wait
for a POLLPRI or POLLERR event. Here is a sample program,
taken from [1]:

#include <stdio.h>
#include <unistd.h>

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <poll.h>

int main (int argc, char *argv[])
{
 int f;
 struct pollfd poll_fds [1];
 int ret;
 char value[4];
 int n;

 f = open("/sys/class/gpio/gpio48",
 O_RDONLY);
 if (f == -1) {
 perror("Can't open gpio48");
 return 1;
 }
 poll_fds[0].fd = f;
 poll_fds[0].events = POLLPRI | POLLERR;
 while (1) {
 printf("Waiting\n");
 ret = poll(poll_fds, 1, -1);
 if (ret > 0) {
 n = read(f, &value,
 sizeof(value));
 printf("Button pressed\n");
 }
 }

 return 0;
}

Since the interface is implemented entirely using file reads
writes, it can be used by any language that provides and API to
access the file system.

III. PWM

PWM (Pulse-Width Modulation) is a mechanism used to
drive a circuit at different levels using a digital output by
rapidly pulsing it on and off. By varying the “on” time
compared to the “off” time a range of drive levels can be
achieved. PWM is often used to control the brightness of LCD
backlights, LEDs and other light sources, to control the speed
of small DC motors and other similar devices. It is possible to
generate a PWM signal using a GPIO pin and software to turn
it on and off, but this is very inefficient in CPU cycles and
consequent power demand. Many SoCs implement PWM
interfaces that can perform the switching entirely in hardware,
and there are PWM interfaces on some I/O extender chips.

The design of the PWM application interface is similar to
the GPIO driver [2]. Each PWM interface is exposed through
subdirectories in /sys/class/pwm. For each PWM controller
there is a directory named pwmchipN, where N is the numeric
identifier of the interface, usually starting from 0. For example:

ls /sys/class/pwm/

export pwmchip0 pwmchip2 pwmchip3 pwmchip5
pwmchip7 unexport

Ini this instance there are five PWM interfaces. In addition,
there are files named export and unexport. As with GPIO,

you write the interface number to which you want to gain
access to export, and when you no longer need the interface
you write the interface number to unexport to return it to the
kernel. For example, to obtain access to interface pwm3, you
would do this;

echo 3 > /sys/class/pwm/export
ls /sys/class/pwm/
export pwm3 pwmchip0 pwmchip2 pwmchip3
pwmchip5 pwmchip7 unexport

Note that directory pwm3 has been created. Within that are
these files:

ls /sys/class/pwm/pwm3/
device duty_ns period_ns polarity power run
subsystem uevent

The files that control the PWM are as follows:

• duty_cycle_ns - The active time of the PWM
signal in nanoseconds. It must be less than
the period.

• period_ns - The total period of the PWM
signal in nanoseconds. This is the sum of the
active and inactive time of the PWM.

• polarity – Sets the polarity of the PWM
signal. Writes to this property only work if
the PWM chip supports changing the polarity.
The polarity can only be changed if the PWM
is not enabled. It may be "normal" or
"inversed".

• run – Enable the PWM by writing “1” and
disable by writing “0”

As an example, assume that you want to program the PWM
interface to a frequency of 1000Hz, and a duty cycle of 25%.
The period is 1 millisecond, which is 1000000 nanoseconds,
and the duty cycle is 0.25 milliseconds, or 250000
nanoseconds, so this sequence of commands would be
necessary:

echo 1000000 > \
/sys/class/pwm/pwm3/period_ns
echo 250000 > \ /sys/class/pwm/pwm3/duty_ns
echo 1 > /sys/class/pwm/pwm3/run

As with GPIO, the interface consists entirely of file reads
and writes and so is easy to implement in most languages.

IV. I2C

I2C stands for Inter-Integrated Circuit [3]. It is a simple low
speed 2-wire bus that is common on embedded boards,
typically used to access peripherals which are not on the SoC
itself. Example usage includes display controllers, camera
sensors, GPIO extenders, and temperature sensors. There is a
related standard known as SMBus (System Management Bus)
that is found on PCs. SMBus is a subset of I2C.

I2C is a master-slave protocol, with the master being a host
controller on the SoC. Slaves have a 7-bit address assigned by
the manufacturer, which you can discover by reading the data
sheet. This allows for up to 128 nodes per bus, but 16 are
reserved, so only 112 nodes are allowed in practice. The bus
speed is 100 KHz in standard mode, or up to 400 KHz in fast

mode. The protocol allows read and write transactions between
the master and slave of up to 32 bytes. Frequently, the first byte
is used to specify a register on the peripheral and the remaining
bytes are the data read from or written to that register.

There is a kernel driver that allows you to access i2c
devices from user-space. You have to build the kernel with
option CONFIG_I2C_CHARDEV enabled. If it is built as a kernel
module, you will have to load module i2c-dev.ko. That will
create a device node for each i2c host adapter. For example:

ls -l /dev/i2c*

crw-rw---- 1 root i2c 89, 0 Jan 1 00:18
/dev/i2c-0

crw-rw---- 1 root i2c 89, 1 Jan 1 00:18
/dev/i2c-1

crw-rw---- 1 root i2c 89, 2 Jan 1 00:18
/dev/i2c-2

crw-rw---- 1 root i2c 89, 3 Jan 1 00:18
/dev/i2c-3

You can perform some simple actions using the command-
line tools in the package i2ctools. The tools are:

• i2cdetect - lists i2c adapters and probe bus

• i2cdump - dump data from all registers of an I2C
peripheral (warning: dangerous!!)

• i2cget - read data from an I2C device

• i2cget <bus> <chip> <register>

• i2cset - write data to an I2C device

• i2cset <bus> <chip> <register> <value>

The programming interface for I2C is based on the POSIX
ioctl(2) function. Unfortunately, ioctl represents input and
output parameters as structures and passes a pointer to the
structure. This makes it difficult to write code to access the I2C
peripherals in any language other than C or C++. Here is an
example program, once again taken from [1]:

#include <i2c-dev.h>
#include <sys/ioctl.h>

#define I2C_ADDRESS 0x5d
#define CHIP_REVISION_REG 0x10

main ()
{

int f_i2c;
int val;

/* Open the adapter and set the address
 of the I2C device */
f_i2c = open ("/dev/i2c-1", O_RDWR);
ioctl (f_i2c, I2C_SLAVE, I2C_ADDRESS);

/* Read 16-bits of data from a
 register */
val = i2c_smbus_read_word_data (f,

CHIP_REVISION_REG);
printf (“Sensor chip revision %d\n”,

val);

www.embedded-world.eu

close (f);
}

To access I2C and SMBus from Python you can use smbus-
cffi [4].

V. CONCLUSION

This paper has presented three general purpose Linux
kernel drivers that allow a considerable portion of the interface
logic to be implementing in user-space, thus avoiding the need
to write complex kernel device drivers for a wide range of real-
world cases. In addition to these interfaces, the interested
reader could also explore accessing USB peripherals using
libusb [5].

I will finish by mentioning that there is a hybrid approach
using a Linux sub-system called User I/O, or UIO. This

requires a simple device driver to be written, but retains most
of the logic in user space. Using it, you can write more
complex drivers that can handle interrupts and even DMA
transfers. The details are too complex to describe here. It is
described in the Linux kernel documentation [6].

REFERENCES

[1] Mastering Embedded Linux Programming by Chris Simmonds, Packt
Publishing, ISBN-13: 978-1784392536

[2] https://www.kernel.org/doc/Documentation/pwm.txt

[3] https://en.wikipedia.org/wiki/I%C2%B2C

[4] https://pypi.python.org/pypi/smbus-cffi/0.4.1

[5] http://www.libusb.org/

[6] https://www.kernel.org/doc/htmldocs/uio-howto/about.html

	I. Introduction
	II. GPIO
	III. PWM
	IV. I2C
	V. Conclusion
	References

