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License

These slides are available under a Creative Commons Attribution-ShareAlike 3.0
license. You can read the full text of the license here
http://creativecommons.org/licenses/by-sa/3.0/legalcode
You are free to

• copy, distribute, display, and perform the work

• make derivative works

• make commercial use of the work

Under the following conditions

• Attribution: you must give the original author credit

• Share Alike: if you alter, transform, or build upon this work, you may distribute
the resulting work only under a license identical to this one (i.e. include this
page exactly as it is)

• For any reuse or distribution, you must make clear to others the license terms of
this work
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https://google.com/+chrissimmonds
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How applications call device drivers

• In Linux, everything is a file 1

• Applications interact with drivers via POSIX functions
open(2), read(2), write(2), ioctl(2), etc

• There are two types of interface

• 1. Device nodes in /dev

• The serial driver, ttyS is an example

• Device nodes are named /dev/ttyS0, /dev/ttyS1 ...

• 2. Driver attributes, exported via sysfs

• For example /sys/class/gpio

1Except network interfaces, which are sockets
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Userspace drivers

• Writing kernel device drivers can be difficult

• Luckily, there are generic drivers that that allow you to
write most of the code in userspace

• We will look at three

• GPIO

• PWM

• I2C

• Note: applications will need read/write permissions
for the files. Consequently, they usually have to run
as user root
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/sys/class/gpio

# ls /sys/class/gpio/
export   gpiochip0   gpiochip32   gpiochip64   gpiochip96   unexport

This device has 4 gpio chips
each with 32 pins

Write to this
file to export
a GPIO pin

to user space

Write to this
file to unexport

a GPIO pin
to user space
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gpiochip

# /sys/class/gpio/gpiochip0
base  device   label  ngpio  power   subsystem  uevent

The number of GPIO pins (32)

A lable to identify the chip
(gpiochip0)

The starting GPIO number (0)
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Exporting a GPIO pin

# echo 42 > /sys/class/gpio/export
# ls /sys/class/gpio
export   gpio42  gpiochip0   gpiochip32   gpiochip64   gpiochip96   unexport

If the export is successful, a new
directory is created
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Inputs and outputs

# ls /sys/class/gpio/gpio42
active_low  device  direction  edge  power  subsystem  uevent  value

Set to 1 to invert
input and ouput

Set direction by
writing "out" or
"in". Default "in" 

The logic level of the
pin. Change the level
of outputs by writing
"0" or "1"
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Interrupts

• If the GPIO can generate interrupts, the file edge can
be used to control interrupt handling

• edge = ["none", "rising", "falling","both]

• For example, to make GPIO60 interrupt on falling
edge:

• echo falling > /sys/class/gpio/gpio60/edge

• To wait for an interrupt, use the poll(2) function

• Example on next slide
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GPIO interrupt code example
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <poll.h>
int main (int argc, char *argv[])
{

int f;
struct pollfd poll_fds [1];
int ret;
char value[4];
f = open("/sys/class/gpio/gpio60/value", O_RDONLY);
poll_fds[0].fd = f;
poll_fds[0].events = POLLPRI | POLLERR;
while (1) {

if (poll(poll_fds, 1, -1) > 0) {
read(f, &value, sizeof(value));
printf("Interrupt! value=%c\n", value[0]);

}
}

}
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PWM

# echo 6 > /sys/class/pwm/export
# ls /sys/class/pwm
export  pwm6  pwmchip0  pwmchip2  pwmchip3  pwmchip5  pwmchip7  unexport

If the export is successful, a new
directory is created

# ls /sys/class/pwm/pwm6/
device  duty_ns  period_ns  polarity  power  run  subsystem  uevent

period_ns

duty_ns
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I2C

• Device nodes, one per I2C bus controller:
# ls -l /dev/i2c*
crw-rw---T 1 root i2c 89, 0 Jan 1 2000 /dev/i2c-0
crw-rw---T 1 root i2c 89, 1 Jan 1 2000 /dev/i2c-1

• Some functions are implemented using ioctl(2), using
commands and structures defined in
usr/include/linux/i2c-dev.h
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i2c-utils

• Command-line tools for interacting with I2C devices

• i2cdetect - list I2C adapters and probe bus

• i2cget - read data from an I2C device

• i2cset - write data to an I2C device
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i2cdetect
• i2cdetect - list i2c adapters and probe bus

• Example: detect devices on bus 1 (/dev/i2c-1)

# i2cdetect -y -r 1
0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- 39 -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- UU UU UU UU -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

UU = device already handled by kernel driver
0x39 = device discovered at address 0x39
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i2cget/i2cset

• i2cget <bus> <chip> <register>: read data from an I2C
device

• Example: read register 0x8a from device at 0x39

# i2cget -y 1 0x39 0x8a
0x50

• i2cset <bus> <chip> <register>: writedata to an I2C
device

• Example: Write 0x03 to register 0x80:

# i2cset -y 1 0x39 0x80 3
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I2C code example
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/i2c-dev.h>

int main(int argc, char **argv)
int f;
char buf[4];

f = open("/dev/i2c-1", O_RDWR);
ioctl(f, I2C_SLAVE, 0x39) < 0) {

buf[0] = 0x8a; /* Chip ID register */
write(f, buf, 1);
read(f, buf, 1);
printf("ID 0x%x\n", buf [0]);

}
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Other examples

• SPI: access SPI devices via device nodes
/dev/spidev*

• USB: access USB devices via libusb

• User defined I/O: UIO

• Generic kernel driver that allows you to write
userspace drivers

• access device registers and handle interrupts from
userspace
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