
How to avoid writing device drivers
for embedded Linux

How to avoid writing device drivers for embedded Linux 1 Copyright © 2011-2016, 2net Ltd

License

These slides are available under a Creative Commons Attribution-ShareAlike 3.0
license. You can read the full text of the license here
http://creativecommons.org/licenses/by-sa/3.0/legalcode
You are free to

• copy, distribute, display, and perform the work

• make derivative works

• make commercial use of the work

Under the following conditions

• Attribution: you must give the original author credit

• Share Alike: if you alter, transform, or build upon this work, you may distribute
the resulting work only under a license identical to this one (i.e. include this
page exactly as it is)

• For any reuse or distribution, you must make clear to others the license terms of
this work

How to avoid writing device drivers for embedded Linux 2 Copyright © 2011-2016, 2net Ltd

http://creativecommons.org/licenses/by-sa/3.0/legalcode

About Chris Simmonds
• Consultant and trainer
• Author of Mastering Embedded Linux

Programming
• Working with embedded Linux since 1999
• Android since 2009
• Speaker at many conferences and

workshops
"Looking after the Inner Penguin" blog at http://2net.co.uk/

https://uk.linkedin.com/in/chrisdsimmonds/

https://google.com/+chrissimmonds

How to avoid writing device drivers for embedded Linux 3 Copyright © 2011-2016, 2net Ltd

http://2net.co.uk/
https://uk.linkedin.com/in/chrisdsimmonds/
https://google.com/+chrissimmonds

Conventional device driver model

User
space

System call handler

Generic services

Device drivers

Hardware

Application

C library

interrupts

Linux
kernel

How to avoid writing device drivers for embedded Linux 4 Copyright © 2011-2016, 2net Ltd

How applications call device drivers

• In Linux, everything is a file 1

• Applications interact with drivers via POSIX functions
open(2), read(2), write(2), ioctl(2), etc

• There are two types of interface

• 1. Device nodes in /dev

• The serial driver, ttyS is an example

• Device nodes are named /dev/ttyS0, /dev/ttyS1 ...

• 2. Driver attributes, exported via sysfs

• For example /sys/class/gpio

1Except network interfaces, which are sockets
How to avoid writing device drivers for embedded Linux 5 Copyright © 2011-2016, 2net Ltd

Userspace drivers

• Writing kernel device drivers can be difficult

• Luckily, there are generic drivers that that allow you to
write most of the code in userspace

• We will look at three

• GPIO

• PWM

• I2C

• Note: applications will need read/write permissions
for the files. Consequently, they usually have to run
as user root

How to avoid writing device drivers for embedded Linux 6 Copyright © 2011-2016, 2net Ltd

/sys/class/gpio

ls /sys/class/gpio/
export gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport

This device has 4 gpio chips
each with 32 pins

Write to this
file to export
a GPIO pin

to user space

Write to this
file to unexport

a GPIO pin
to user space

How to avoid writing device drivers for embedded Linux 7 Copyright © 2011-2016, 2net Ltd

gpiochip

/sys/class/gpio/gpiochip0
base device label ngpio power subsystem uevent

The number of GPIO pins (32)

A lable to identify the chip
(gpiochip0)

The starting GPIO number (0)

How to avoid writing device drivers for embedded Linux 8 Copyright © 2011-2016, 2net Ltd

Exporting a GPIO pin

echo 42 > /sys/class/gpio/export
ls /sys/class/gpio
export gpio42 gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport

If the export is successful, a new
directory is created

How to avoid writing device drivers for embedded Linux 9 Copyright © 2011-2016, 2net Ltd

Inputs and outputs

ls /sys/class/gpio/gpio42
active_low device direction edge power subsystem uevent value

Set to 1 to invert
input and ouput

Set direction by
writing "out" or
"in". Default "in"

The logic level of the
pin. Change the level
of outputs by writing
"0" or "1"

How to avoid writing device drivers for embedded Linux 10 Copyright © 2011-2016, 2net Ltd

Interrupts

• If the GPIO can generate interrupts, the file edge can
be used to control interrupt handling

• edge = ["none", "rising", "falling","both]

• For example, to make GPIO60 interrupt on falling
edge:

• echo falling > /sys/class/gpio/gpio60/edge

• To wait for an interrupt, use the poll(2) function

• Example on next slide

How to avoid writing device drivers for embedded Linux 11 Copyright © 2011-2016, 2net Ltd

GPIO interrupt code example
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <poll.h>
int main (int argc, char *argv[])
{

int f;
struct pollfd poll_fds [1];
int ret;
char value[4];
f = open("/sys/class/gpio/gpio60/value", O_RDONLY);
poll_fds[0].fd = f;
poll_fds[0].events = POLLPRI | POLLERR;
while (1) {

if (poll(poll_fds, 1, -1) > 0) {
read(f, &value, sizeof(value));
printf("Interrupt! value=%c\n", value[0]);

}
}

}

How to avoid writing device drivers for embedded Linux 12 Copyright © 2011-2016, 2net Ltd

PWM

echo 6 > /sys/class/pwm/export
ls /sys/class/pwm
export pwm6 pwmchip0 pwmchip2 pwmchip3 pwmchip5 pwmchip7 unexport

If the export is successful, a new
directory is created

ls /sys/class/pwm/pwm6/
device duty_ns period_ns polarity power run subsystem uevent

period_ns

duty_ns

How to avoid writing device drivers for embedded Linux 13 Copyright © 2011-2016, 2net Ltd

I2C

• Device nodes, one per I2C bus controller:
ls -l /dev/i2c*
crw-rw---T 1 root i2c 89, 0 Jan 1 2000 /dev/i2c-0
crw-rw---T 1 root i2c 89, 1 Jan 1 2000 /dev/i2c-1

• Some functions are implemented using ioctl(2), using
commands and structures defined in
usr/include/linux/i2c-dev.h

How to avoid writing device drivers for embedded Linux 14 Copyright © 2011-2016, 2net Ltd

i2c-utils

• Command-line tools for interacting with I2C devices

• i2cdetect - list I2C adapters and probe bus

• i2cget - read data from an I2C device

• i2cset - write data to an I2C device

How to avoid writing device drivers for embedded Linux 15 Copyright © 2011-2016, 2net Ltd

i2cdetect
• i2cdetect - list i2c adapters and probe bus

• Example: detect devices on bus 1 (/dev/i2c-1)

i2cdetect -y -r 1
0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- 39 -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- UU UU UU UU -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

UU = device already handled by kernel driver
0x39 = device discovered at address 0x39

How to avoid writing device drivers for embedded Linux 16 Copyright © 2011-2016, 2net Ltd

i2cget/i2cset

• i2cget <bus> <chip> <register>: read data from an I2C
device

• Example: read register 0x8a from device at 0x39

i2cget -y 1 0x39 0x8a
0x50

• i2cset <bus> <chip> <register>: writedata to an I2C
device

• Example: Write 0x03 to register 0x80:

i2cset -y 1 0x39 0x80 3

How to avoid writing device drivers for embedded Linux 17 Copyright © 2011-2016, 2net Ltd

I2C code example
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/i2c-dev.h>

int main(int argc, char **argv)
int f;
char buf[4];

f = open("/dev/i2c-1", O_RDWR);
ioctl(f, I2C_SLAVE, 0x39) < 0) {

buf[0] = 0x8a; /* Chip ID register */
write(f, buf, 1);
read(f, buf, 1);
printf("ID 0x%x\n", buf [0]);

}

How to avoid writing device drivers for embedded Linux 18 Copyright © 2011-2016, 2net Ltd

Other examples

• SPI: access SPI devices via device nodes
/dev/spidev*

• USB: access USB devices via libusb

• User defined I/O: UIO

• Generic kernel driver that allows you to write
userspace drivers

• access device registers and handle interrupts from
userspace

How to avoid writing device drivers for embedded Linux 19 Copyright © 2011-2016, 2net Ltd

