
Linux flash file systems
JFFS2 vs UBIFS

Chris Simmonds
2net Limited

Embedded Systems Conference UK. 2009

Copyright © 2009, 2net Limited



2Chris Simmonds 2net Ltd

Overview

 Many embedded systems use raw flash chips
 JFFS2 has been the main choice for almost 10 

years
 As flash sizes increase the scalability problems 

of JFFS2 become more obvious
 UBIFS is being talked about as the next flash 

file system
 How does it compare?



3Chris Simmonds 2net Ltd

Types of flash memory

NOR NAND

Erase block
e.g. 128 KiB

Page
e.g. 2112 B

Out Of Band
area (64 B)

Erase block
e.g. 128 KiB

Data area
(2048 B)

Max erase cycles: 100K to 1M
per erase block

Max erase cycles: 10K to 100K
per erase block



4Chris Simmonds 2net Ltd

NAND flash

 Bit errors
 Need ECC stored in OOB area to detect & correct
 ECC may be handled in hardware or software

 Bad blocks
 Up to 2% erase blocks bad in new chips
 Blocks may go bad during normal operation
 Bad block marked with a flag on OOB

 Multi-Level Cell (MLC) NAND
 High storage density; high bit error rate; few erase 

cycles (10 K)



5Chris Simmonds 2net Ltd

Flash translation layers

 Sub allocation within erase block
 Garbage collection to coalesce & free obsolete 

data
 Wear leveling
 Bad block handling (NAND)

 Includes ECC generation & checking

 Avoid data corruption when powered down



6Chris Simmonds 2net Ltd

Commodity flash devices

 For example SD, Compact Flash, USB storage
 Flash translation layer implemented in firmware 

on the device
 Appears to operating system like a hard drive

 Very limited reliability data from manufacturers
 Some have known problems with wear leveling and 

corruption at power off

 Alternative: use raw flash with translation in the 
file system
 That is what JFFS2 and UBIFS do!



7Chris Simmonds 2net Ltd

Flash file systems

JFFS2

MTD

UBI

MTD

UBIFS

Raw flash Raw flash



8Chris Simmonds 2net Ltd

Memory Technology Device layer

MTD core

NOR SLC NAND MLC NAND

Character
/dev/mtd

Block dev
/dev/mtdblock

  MTD is the lowest level for accessing flash chips
  Presents flash as one or more partitions of erase blocks



9Chris Simmonds 2net Ltd

JFFS2

MTD
partition Free erase blocks

Data nodes Summary node

Erase block

Used erase blocks

   File data and meta data stored as nodes

   No index stored on-chip: have to re-create from 

summary nodes at mount: mount is slow

   Bad block handling (NAND)

   Optional data compression - zlib default



10Chris Simmonds 2net Ltd

UBI

 UBI = Unsorted Block Image
 Maps Physical Erase Blocks in an MTD partition 

to Logical Erase Blocks
 Adds

 Bad block handling
 Volumes
 Wear leveling within a volume

 Introduced in Linux 2.6.22



11Chris Simmonds 2net Ltd

UBI - erase block mapping

MTD partition
PEBs

UBI: LEBs

Bad block

Vol 1 Vol 2

PEB = Physical Erase Block
LEB = Logical Erase Block



12Chris Simmonds 2net Ltd

UBIFS
 Journal

 Robust on power fail

 Write-back cache
 Faster writes (see next slide)

 On-chip index
 Fast mount

 Compression: lzo or zlib
 More data on your chip!

 Introduced in Linux 2.6.27



13Chris Simmonds 2net Ltd

Consequences of write-back cache

 Write-through cache (e.g. JFFS2)
 All writes are synchronous

 Write-back cache
 Writes are completed later by pdflush daemon

 To avoid loss of data need to do one of
 Call fsync() after critical writes
 Open files with O_SYNC flag
 Mount ubifs with -o sync



14Chris Simmonds 2net Ltd

Device used for testing

 ARM 926 SoC @ 155 Mhz
 64 MiB RAM
 1 x 1Gib (128 MiB) ST/Numonyx NAND flash

 128 KiB erase block
 2 KiB page
 Software ECC
 Programmed i/o

 2.6.27 kernel



15Chris Simmonds 2net Ltd

Write test

 Write 10 MiB random data in block sizes 4KiB, 
64KiB and 1MiB to
 Raw device: /dev/mtdblock5
 JFFS2 file
 UBIFS file

 Write 10 MiB zeros to
 JFFS2 file
 UBIFS file



16Chris Simmonds 2net Ltd

Write speed

4K 64KB 1MB
0.000

1.000

2.000

3.000

4.000

5.000

6.000

raw
JFFS2/rnd
JFFS2/zero
UBIFS/rnd
UBIFS/zero

M
B

/s



17Chris Simmonds 2net Ltd

Write speed conclusions

 Raw speed is 0.7 MiB/s
 JFFS2

 Random data: 0.2 MiB/s
− Compression slows it down

 Zeros: 0.7 MiB/s
− Compression fast, approaches raw speed

 UBIFS
 Random data: 0.8 MiB/s
 Zeros: 5 MiB/s

− Write-back cache speeds up in both cases



18Chris Simmonds 2net Ltd

Read speed test

 Read 10 MiB random data in block sizes 4KiB, 
64KiB and 1MiB from
 Raw device: /dev/mtdblock5
 JFFS2 file
 UBIFS file

 Measure JFFS2 and UBIFS times
 Immediately after mount (no data cached)
 Again, with cache fully primed



19Chris Simmonds 2net Ltd

Read speed results

4K 64KB 1MB
0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

raw
JFFS2 first
JFFS2 again
UBIFS first
UBIFS again

M
iB

/s



20Chris Simmonds 2net Ltd

Read speed conclusions

 Raw speed: 1.1 MiB/s
 Immediately after mount

 JFFS2: 0.87 MiB/s
 UBIFS: 1.0 MiB/s

 Subsequently
 Both ~15 MiB/s

 Not much difference between JFFS2 and UBIFS



21Chris Simmonds 2net Ltd

Mount time

 Mount a file system containing
 No files
 10 files of 8MiB (partition 80% full)
 10,000 files of 8KiB (partition 80% full)



22Chris Simmonds 2net Ltd

Mount speed

JFFS2 UBIFS
0

5

10

15

20

25

30

35

Mount time

empty
large files
small files

S
ec

on
ds



23Chris Simmonds 2net Ltd

Mount time conclusions

 UBIFS mount time is constant at 0.5s
 JFFS2 mount time increases dramatically

 Empty: 1.98s
 10K small files: 30s

 The JFFS2 garbage collector thread runs for up 
to 90s after mount
 Some file operations (e.g. ls *) will be blocked until 

it completes



24Chris Simmonds 2net Ltd

Space efficiency

JFFS2 % overhead UBIFS % overhead
106624 2.46% 98004 11.54%

Empty partition with initial size 109312 blocks of 1 KiB

Space taken by a file containing 1 MiB random data when 
written many small pieces and one large piece

JFFS2 UBIFS
Write size Blocks used % overhead Blocks used % overhead
16 bytes 1468 43.36% 1364 33.20%
1MiB 1048 2.34% 1365 33.30%



25Chris Simmonds 2net Ltd

Summary

 UBIFS is faster than JFFS2 in all cases
 Overwhelmingly so during mount

 JFFS2 makes more efficient use of space
 Conclusion:

 Use JFFS2 on small partitions (< 16 MiB)
 Use UBIFS in other cases



26Chris Simmonds 2net Ltd

References

 The Linux MTD, JFFS2 and UBI project
 http://www.linux-mtd.infradead.org/index.html


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

