
Debugging Embedded Devices with GDB

Workbook

Version v 3.0

Embedded Linux Conference Europe, October 2020

Copyright c© 2011-2020, 2net Ltd

Debugging Embedded Devices with GDB

Copyright c© 2011-2020, 2net Ltd

Debugging Embedded Devices with GDB

1 Debugging embedded devices using GDB

Objectives

These exercises were written as an extra resource to my tutorial at the Embedded Linux Conference
Europe 2020. They are intended to be a gentle introduction to remote debugging on the Raspberry
Pi using GDB

1.1 Initial set up

At this point, you should have:

• A Raspberry Pi model 3B or 3B+ (*)

• A micro SD card

• An Ethernet cable

• A serial to USB cable, such as this one from Adafruit: (https://www.adafruit.com/
product/954)

• A PC or laptop running a Linux distro, such as Ubuntu 18.04

(*) These are the only versions of the Raspberry Pi that these instructions will work with. Of course,
the exercises themselves are not specific to the 3B/3B+, and they could be adapted to work on
other Pis without much trouble. But, I repeat, the exercises only work verbatim on a Raspberry Pi
3B/3B+

1.2 (Optional) Build Yocto Project

You don’t have to do this part, you can just skip to the next section and download my prebuilt
image and SDK. If you do go ahead, note that building the core image and the SDK will take up
about 70 GiB of disk space and may take over an hour to run

Get the meta layers for Yocto Project and Raspberry Pi. I am using the dunfell (3.1) release of
Yocto Project, which is the latest version at the time of writing this workbook:

$ mkdir elce-gdb-totorial; cd elce-gdb-totorial

$ git clone -b dunfell git://git.yoctoproject.org/poky.git

$ git clone -b dunfell git://git.yoctoproject.org/meta-raspberrypi

Set up the build environment in directory build-rpi

$ source oe-init-build-env build-rpi

Add the Raspberry Pi layer

$ bitbake-layers add-layer ../meta-raspberrypi

Edit conf/local.conf. This is the entire content of my local.conf:

MACHINE = "raspberrypi3"

ENABLE_UART = "1"

DISTRO ?= "poky"

Copyright c© 2011-2020, 2net Ltd 1

https://www.adafruit.com/product/954
https://www.adafruit.com/product/954

Debugging Embedded Devices with GDB

PACKAGE_CLASSES ?= "package_rpm"

EXTRA_IMAGE_FEATURES ?= "debug-tweaks tools-debug"

enable tui interface in gdb

PACKAGECONFIG_append_pn-gdb = " tui"

PACKAGECONFIG_append_pn-gdb-cross-canadian-arm = " tui"

Add the dropbear ssh server

CORE_IMAGE_EXTRA_INSTALL += "dropbear"

USER_CLASSES ?= "buildstats image-mklibs image-prelink"

PATCHRESOLVE = "noop"

BB_DISKMON_DIRS ??= "\

STOPTASKS,${TMPDIR},1G,100K \

STOPTASKS,${DL_DIR},1G,100K \

STOPTASKS,${SSTATE_DIR},1G,100K \

STOPTASKS,/tmp,100M,100K \

ABORT,${TMPDIR},100M,1K \

ABORT,${DL_DIR},100M,1K \

ABORT,${SSTATE_DIR},100M,1K \

ABORT,/tmp,10M,1K"

PACKAGECONFIG_append_pn-qemu-system-native = " sdl"

CONF_VERSION = "1"

Build base image

$ bitbake core-image-base

You will find the image here:
tmp/deploy/images/raspberrypi3/core-image-base-raspberrypi3.wic.bz2

Build the SDK

$ bitbake -c populate_sdk core-image-base

You will find the SDK here:
tmp/deploy/sdk/poky-glibc-x86_64-core-image-base-cortexa7t2hf-neon-vfpv4-raspberrypi3-toolch

ain-3.1.3.sh

1.3 Write the image to the SD card

If you did not build the image from source you can download it from here

https://2net.co.uk/downloads/core-image-base-raspberrypi3.wic.bz2

Plug a micro SD card into the reader on your computer. Run the command lsblk to find which
device it has been assigned to. In this case I am using an 8 GB card, which shows up with an
indicated size of 7.2 GB:

$ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

[...]

mmcblk0 179:0 0 7.2G 0 disk

|-mmcblk0p1 179:1 0 7.2G 0 part /media/chris/6A44-4A1B

[...]

Copyright c© 2011-2020, 2net Ltd 2

https://2net.co.uk/downloads/core-image-base-raspberrypi3.wic.bz2

Debugging Embedded Devices with GDB

Write the image to SD card:

$ sudo bmaptool copy core-image-base-raspberrypi3.wic.bz2 /dev/mmcblk0

1.4 Boot the Raspberry Pi

Plug the SD card into the Raspberry Pi

Plug in the serial cable and run a terminal emulator program such as minicom

$ minicom -D /dev/ttyUSB0 -w

Power on the Raspberry Pi. You should see something like this on the serial console:

Welcome to minicom 2.7.1

OPTIONS: I18n

Compiled on Aug 13 2017, 15:25:34.

Port /dev/ttyUSB0, 15:29:16

Press CTRL-A Z for help on special keys

[0.000000] Booting Linux on physical CPU 0x0

[...]

[11.348058] NET: Registered protocol family 39

umount: can’t unmount /mnt/.psplash: No such file or directory

Poky (Yocto Project Reference Distro) 3.1.3 raspberrypi3 /dev/ttyS0

raspberrypi3 login:

Log in as user root, no password

eth0 will use DHCP to get an IP address - use ifconfig to find out what it is

root@raspberrypi3:∼# ifconfig eth0

eth0 Link encap:Ethernet HWaddr B8:27:EB:DB:3A:91

inet addr:192.168.42.2 Bcast:192.168.42.255 Mask:255.255.255.0

[...]

In this case it is 192.168.42.2

1.5 Install the SDK

If you built the SDK from source in section 1.2, then you can install it like this:

\filePath{poky-glibc-x86_64-core-image-base-cortexa7t2hf-neon-vfpv4-raspberrypi3-}

\filePath{toolchain-3.1.3.sh}

Alternatively, if you did not build the SDK from source you can download a copy from

https://2net.co.uk/downloads/sdk-raspberrypi3-toolchain-3.1.3.sh (Note: you don’t
want to open the file, you want to save it)

Install it like so:

$./sdk-raspberrypi3-toolchain-3.1.3.sh

Copyright c© 2011-2020, 2net Ltd 3

https://2net.co.uk/downloads/sdk-raspberrypi3-toolchain-3.1.3.sh

Debugging Embedded Devices with GDB

1.6 Get the sample code

Download the sample code from

https://2net.co.uk/downloads/debug-samples-elce2020.tar.gz

Extract the files:

$ cd

$ mkdir -p elce-gdb-totorial

$ cd elce-gdb-totorial

$ tar xf Downloads/debug-samples-elce2020.tar.gz

$ tree

.

|-- sample-code

|-- gdb.init

|-- helloworld

| |-- helloworld.c

| |-- Makefile

|-- may-crash

| |-- Makefile

| |-- may-crash.c

|-- usb-demo

| |-- Makefile

| |-- usb-demo.c

|-- word-count

|-- Makefile

|-- test.txt

|-- word-count.c

Copyright c© 2011-2020, 2net Ltd 4

https://2net.co.uk/downloads/debug-samples-elce2020.tar.gz

Debugging Embedded Devices with GDB

2 Remote debugging with gdbserver

2.1 Building the helloworld sample program

Set up the Yocto Project SDK

$ source /opt/poky/3.1.3/environment-setup-cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi

Compile the sample helloworld program:

$ cd

$ cd elce-gdb-totorial

$ cp -a sample-code/helloworld .

$ cd helloworld

$ make

Verify that it has been compiled for an ARM target

$ file helloworld

helloworld: ELF 32-bit LSB shared object, ARM, EABI5 version 1 (SYSV), dynamically linked,

interpreter /lib/ld-linux-armhf.so.3, BuildID[sha1]=d938ecdd080deec08ff56e33783b309193d2d8

16, for GNU/Linux 3.2.0, with debug_info, not stripped

Copy it to the Raspberry Pi:

$ scp helloworld root@192.168.42.2:/usr/bin

Log in to the Raspberry Pi using ssh

$ ssh root@192.168.42.2

Run the program on the Raspberry Pi. You should see that it prints out four lines of text:

helloworld

0 Hello world

1 Hello world

2 Hello world

3 Hello world

2.2 Debugging helloworld

The next task is to run helloworld in a GDB session.

On the Raspberry Pi, launch the program with gdbserver:

gdbserver :2001 /usr/bin/helloworld

Process /usr/bin/helloworld created; pid = NNN

Listening on port 2001

On you computer, start gdb

cd helloworld

$ arm-poky-linux-gnueabi-gdb helloworld

[...]

Reading symbols from helloworld...

(gdb)

Copyright c© 2011-2020, 2net Ltd 5

Debugging Embedded Devices with GDB

Connect to the Raspberry Pi

(gdb) set sysroot /opt/poky/3.1.3/sysroots/cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi

(gdb) target remote 192.168.42.2:2001

Set a breakpoint on main

(gdb) break main

Breakpoint 1 at 0xNNNNNN: file helloworld.c, line 7.

List the breakpoints

(gdb) info break

Num Type Disp Enb Address What

1 breakpoint keep y 0xNNNNNNNN in main at helloworld.c:7

Continue to the breakpoint

(gdb) continue

Continuing.

Breakpoint 1, main (argc=1, argv=0x7efffdb4) at helloworld.c:7

7 for (i = 0; i < 4; i++)

List the lines of code around the breakpoint (which is on line 7)

(gdb) list

2 #include <stdlib.h>

3

4 int main (int argc, char *argv[])

5 {

6 int i;

7 for (i = 0; i < 4; i++)

8 printf ("%d Hello world\n", i);

9 return 0;

10

Run the program one step at a time using the next instruction, which you can abbreviate to n, until
it has been round the loop once.

Type continue (abbreviation c) to allow the program to continue executing

When the program has finished, quit GDB by typing quit (abbreviation q)

2.3 Looking at variables

Launch helloworld with gdbserver on the Raspberry Pi and arm-poky-linux-gnueabi-gdb helloworld

on your development host, as in the precious exefcrise Set a breakpoint on main and run the
program

Use the print command (abbreviation p) to display variable i:

(gdb) print i

Step through the program and see that i changes on each iteration

Try setting i to a different number just before the printf:

Copyright c© 2011-2020, 2net Ltd 6

Debugging Embedded Devices with GDB

(gdb) set var i = 99

Note that the program prints out 99

Copyright c© 2011-2020, 2net Ltd 7

Debugging Embedded Devices with GDB

3 GDB command files

To reduce the amount of typing, create a GDB command file. Call it gdb.init and put these lines
into it

set sysroot /opt/poky/3.1.3/sysroots/cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi

define rpi3

target remote 192.168.42.2:2001

end

Launch helloworld with gdbserver as before, then launch GDB like this

$ arm-poky-linux-gnueabi-gdb -x gdb.init helloworld

To connect to the Raspberry Pi, type

(gdb) rpi3

You will find a copy of gdb.init in the sample-code directory. I will be using that for the remainder
of this tutorial

Copyright c© 2011-2020, 2net Ltd 8

Debugging Embedded Devices with GDB

4 GDB front ends

In this exercise we will be using cgdb

Install cgdb for your Linux distro, e.g. for Ubuntu you would type:

$ sudo apt install cgdb

Alternatively, you can install it from source as shown on the slides:

$ wget https://cgdb.me/files/cgdb-0.7.1.tar.gz

$ tar xz cgdb-0.7.1.tar.gz

$ cd cgdb-0.7.1

$./configure --prefix=/usr/local

$ make

$ sudo make install

To use the cgdb front end to GDB:

$ cgdb -d arm-poky-linux-gnueabi-gdb -x gdb.init helloworld

Repeat the previous session using this interface

Copyright c© 2011-2020, 2net Ltd 9

Debugging Embedded Devices with GDB

5 Stack frames

For this demo, we will use the word-count program. Cross-compile it like so:

$ cd

$ cd elce-gdb-totorial

$ cp -a sample-code/word-count .

$ cd word-count

$ make

Copy word-count and the sample data file to the Raspberry Pi:

$ scp word-count root@192.168.42.2:/usr/bin

$ scp test.txt root@192.168.42.2:

Now check that it works by logging on to the Raspberry Pi and running the program:

word-count test.txt

1 brown

1 dog

1 fox

1 jumps

1 lazy

1 over

1 quick

2 the

Start word-count with gdbserver

gdbserver :2001 /usr/bin/word-count test.txt

Process /usr/bin/helloworld created; pid = NNN

Listening on port 2001

Launch gdb

$ cgdb -d arm-poky-linux-gnueabi-gdb -x gdb.init word-count

Use the rpi3 command to connect to the Raspberry Pi

Set a breakpoint on function addtree, then type ’c’

You will see that addtree is called recursively. At each break, you can use the backtrace command
(abbreviated bt) to show where you are in the call sequence. You can use the frame command to
switch to another stack frame

Copyright c© 2011-2020, 2net Ltd 10

Debugging Embedded Devices with GDB

6 Debugging libraries

This exercise is based on a program called usb-demo, which prints a list of usb devices. The objective
is to be able to step into and see the code for the libraries it uses, which are libc and libusb

Compile the program and test it:

$ cd

$ cd elce-gdb-totorial

$ cp -a sample-code/usb-demo .

$ cd usb-demo

$ make

Copy it the Raspberry Pi:

$ scp usb-demo root@192.168.42.2:/usr/bin

Run it on the Raspberry Pi to see what it does:

usb-demo

USB demo program

USB device 0 0424:7800

USB device 1 0424:2514

USB device 2 0424:2514

USB device 3 1d6b:0002

To set breakpoints and step through library code you need to tell GDB where to find the source
code.

GDB reads the executable to find the compiled source directory ($cdir). You can see what that is
using this command:

$ arm-poky-linux-gnueabi-objdump --dwarf usb-demo | grep DW_AT_comp_dir

<1c> DW_AT_comp_dir : (indirect string, offset: 0x8): /usr/src/debug/glibc/2.31+git

AUTOINC+6fdf971c9d-r0/git/csu

But that path does not lead to the place where the source code is stored. In the case of the Yocto
Project SDK, the source code is actually in usr/src/debug relative to the sysroot. So you need
tell GDB to substitute the paths like so:

(gdb) set substitute-path /usr/src/debug \

/opt/poky/3.1.3/sysroots/cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi/usr/src/debug

With this substitution in place you will find that you can step into C library functions such as
printf

But, when you try to step into functions such as libusb_init, you find that GDB reports an er-
ror:

12 int ret = libusb_init(NULL);

(gdb) s

libusb_init (context=0x0) at ../../libusb-1.0.22/libusb/core.c:2121

2121 ../../libusb-1.0.22/libusb/core.c: No such file or directory.

This path does not work with the substitute-path set earlier. One simple solution is to use the dir
command to point explicitly to the directory containing the code for libusb. The code should be in
the sysroot, so:

Copyright c© 2011-2020, 2net Ltd 11

Debugging Embedded Devices with GDB

$ find /opt/poky/3.1.3/sysroots/cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi/ -name core.c

/opt/poky/3.1.3/sysroots/cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi/usr/src/debug/libusb1/1.

0.22-r0/libusb-1.0.22/libusb/core.c

Now run GDB again and add this directory to the search with

dir /opt/poky/3.1.3/sysroots/cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi/usr/src/debug/libusb

1/1.0.22-r0/libusb-1.0.22/libusb

Then check that you can step into the libusb_init function

Copyright c© 2011-2020, 2net Ltd 12

Debugging Embedded Devices with GDB

7 Attaching to a running program

Let’s take a look at what the init program is doing.

First, you need to find the full path to the executable you want to debug. Bearing in mind that
the init program always has PID 1, you can look into the proc file system to find the path to the
executable like this:

ls -l /proc/1/exe

lrwxrwxrwx 1 root root 0 Jan 1 1970 /proc/1/exe -> /sbin/init.sysvinit

Use the attach option of gdbserver to attach to init, with PID 1

gdbserver --attach :2001 1

Now use GDB to load the symbol table for init and connect to the target

$ cgdb -d arm-poky-linux-gnueabi-gdb -x ../gdb.init \

/opt/poky/3.1.3/sysroots/cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi/sbin/init.sysvinit

In gdb, type next. After a while, init will wake up and run the next line of code. Now you have
control of init and can debug it in the normal way

Try the backtrace command to show the call stack to the current location

Try stepping through init to see how it works

When you are done, detach from init so that it can continue without intervention

(gdb) detach

Copyright c© 2011-2020, 2net Ltd 13

Debugging Embedded Devices with GDB

8 Core dumps

Build the test program Compile the program and test it

$ cd

$ cd elce-gdb-totorial

$ cp -a sample-code/may-crash .

$ cd may-crash

$ make

Copy it the Raspberry Pi:

$ scp may-crash root@192.168.42.2:/usr/bin

Run it on the Raspberry Pi to see what it does:

may-crash

0 Hello world

Segmentation fault

But, there is no core file, because the ulimit is not set.

ulimit -c

0

So, go ahead and set the limit for core files to ”unlimited”:

ulimit -c unlimited

Now run the program and it will generate a core file in the current directory.

This is usually inconvenient, so try creating a directory for core files and set a core pattern that
references it:

mkdir /corefiles

chmod 777 /corefiles

echo "/corefiles/%e-%p" > /proc/sys/kernel/core_pattern

Run the program again - a core file is written to /corefiles

Now, you can copy the core file to your PC and use GDB to look at the state of the program when
is crashed.

$ scp root@192.168.42.2:/corefiles/* .

$ cgdb -d arm-poky-linux-gnueabi-gdb -x gdb.init may-crash may-crash-907

[...]

Core was generated by ‘may-crash’.

Program terminated with signal SIGSEGV, Segmentation fault.

(gdb)

Copyright c© 2011-2020, 2net Ltd 14

	Debugging embedded devices using GDB
	Initial set up
	(Optional) Build Yocto Project
	Write the image to the SD card
	Boot the Raspberry Pi
	Install the SDK
	Get the sample code

	Remote debugging with gdbserver
	Building the helloworld sample program
	Debugging helloworld
	Looking at variables

	GDB command files
	GDB front ends
	Stack frames
	Debugging libraries
	Attaching to a running program
	Core dumps

