
Exploring Android internals with ADB

Chris Simmonds

Droidcon London 2022

Exploring Android internals with ADB 1 Copyright © 2011-2022, 2net Ltd

License

These slides are available under a Creative Commons Attribution-ShareAlike 4.0 license. You can read the full
text of the license here
http://creativecommons.org/licenses/by-sa/4.0/legalcode

You are free to

• copy, distribute, display, and perform the work

• make derivative works

• make commercial use of the work

Under the following conditions

• Attribution: you must give the original author credit

• Share Alike: if you alter, transform, or build upon this work, you may distribute the resulting work only
under a license identical to this one (i.e. include this page exactly as it is)

• For any reuse or distribution, you must make clear to others the license terms of this work

Exploring Android internals with ADB 2 Copyright © 2011-2022, 2net Ltd

http://creativecommons.org/licenses/by-sa/4.0/legalcode

About Chris Simmonds
• Consultant and trainer
• Author of Mastering Embedded Linux Programming
• Working with embedded Linux since 1999
• Android since 2009
• Speaker at many conferences and workshops

"Looking after the Inner Penguin" blog at https://2net.co.uk/

@2net_software

https://uk.linkedin.com/in/chrisdsimmonds/

Exploring Android internals with ADB 3 Copyright © 2011-2022, 2net Ltd

https://2net.co.uk/
https://uk.linkedin.com/in/chrisdsimmonds/

• Introduction

• System Services

• Native Services

• Sandboxing

• System properties

Exploring Android internals with ADB 4 Copyright © 2011-2022, 2net Ltd

Tools: ADB

adbd

Target

adb

Host

adbd

Target

adb server

TCP/IP USB cable

5037

5555

adbd

Emulator

5554

ADB is the link between development machine and Android device

Exploring Android internals with ADB 5 Copyright © 2011-2022, 2net Ltd

Tools: scrcpy

ADB

Android
device

Development machine

scrcpy = screen copy: remote display and touch input, does not require root

https://github.com/Genymobile/scrcpy

Exploring Android internals with ADB 6 Copyright © 2011-2022, 2net Ltd

https://github.com/Genymobile/scrcpy

What is Android?

Exploring Android internals with ADB 7 Copyright © 2011-2022, 2net Ltd

Architecture of Android

Android Java libraries (android.*)

Android Java API

Applications

System services

"Glue" libraries

Native
daemons

HAL
Native

libraries

Linux

Binder

JNI

Android
framework

Native
layer

Kernel

App
layer

Exploring Android internals with ADB 8 Copyright © 2011-2022, 2net Ltd

• Introduction

• System Services

• Native Services

• Sandboxing

• System properties

Exploring Android internals with ADB 9 Copyright © 2011-2022, 2net Ltd

System services

• The Android framework is an object-oriented operating system implemented on top
of a conventional POSIX operating system, Linux

• Implemented as a collection of system services

• System services have high privilege levels and access to all framework APIs

• Client programs (Android apps) send objects to system services to do low level tasks

• We can see system services from ADB using the service command

service list

service call <service name> <function number>

Exploring Android internals with ADB 10 Copyright © 2011-2022, 2net Ltd

Binder

• Binder is the Inter Process Communication (IPC) used to communicate between
Applications and Framework objects

• Messages are encoded into parcels that are sent from a manager interface to a
service

Application

/dev/binder

setContentView();

framework.jar

Activity Manager

system_server

Activity Manager(*)

function call

Parcel Parcel

(*) Should have been called 'Activity Service'

Exploring Android internals with ADB 11 Copyright © 2011-2022, 2net Ltd

Demo time

System services

Exploring Android internals with ADB 12 Copyright © 2011-2022, 2net Ltd

Package manager

• Package manager is a system service responsible for tracking packages and some
system-wide attributes

• installing and uninstalling packages
• tracking permissions granted to packages
• system features
• platform libraries

• Command-line tools

dumpsys package

cmd package

pm

Exploring Android internals with ADB 13 Copyright © 2011-2022, 2net Ltd

Packages

• The main database for Package Manager is /data/system/packages.xml

Dump entire package database

dumpsys package packages

List packages

pm list packages

Exploring Android internals with ADB 14 Copyright © 2011-2022, 2net Ltd

Activity Manager

• Activity Manager is the system service that handles lifecycle events

• ... the scheduler for Android applications

• Command line tools:

dumpsys activity

logcat -b event

am

Exploring Android internals with ADB 15 Copyright © 2011-2022, 2net Ltd

• Introduction

• System Services

• Native Services

• Sandboxing

• System properties

Exploring Android internals with ADB 16 Copyright © 2011-2022, 2net Ltd

Native services

• Native services run lower level tasks, between framework and Linux

• Started by init

• boot sequence: power on – bootloader – linux – init – Android

• some important daemons:

adbd ADB daemon
logd Android log daemon
zygote Parent process of Android Run Time
ueventd creates device nodes in /dev

bootanim shows the boot animation
lmkd low memory killer daemon
vold volume daemon, mounts external storage e.g. SD cards

Exploring Android internals with ADB 17 Copyright © 2011-2022, 2net Ltd

Starting native daemons

• /system/bin/init is started by Linux at boot time

• Init parses "run command" files (.rc), starting with /system/etc/init/hw/init.rc

• There are other .rc files in /system/etc/init and /vendor/etc/init

• about 100 in all
• The status of each daemon is recorded in property init.svc.<daemon name>

getprop | grep init.svc

[init.svc.adbd]: [running]

[init.svc.audioserver]: [running]

[init.svc.bootanim]: [stopped]

[...]

init.svc.vendor.audio-hal]: [running]

[...]

Exploring Android internals with ADB 18 Copyright © 2011-2022, 2net Ltd

Zygote

• zygote is a native daemon that launches ART and so is able to run DEX code

• Launches system_server, which starts Android

• Launches Android apps on demand

• Started by /system/etc/init/hw/init.zygote64.rc

Exploring Android internals with ADB 19 Copyright © 2011-2022, 2net Ltd

Demo time

Native services

Exploring Android internals with ADB 20 Copyright © 2011-2022, 2net Ltd

• Introduction

• System Services

• Native Services

• Sandboxing

• System properties

Exploring Android internals with ADB 21 Copyright © 2011-2022, 2net Ltd

The application sandbox

• Application sandbox limits the memory and files that an application can see

• Android uses Linux processes for memory separation

• Android uses Linux User IDs (UID), Group IDs and file mode for file separation
• also known as DAC, Discretionary Access Control

Exploring Android internals with ADB 22 Copyright © 2011-2022, 2net Ltd

Memory separation

• A Linux process runs in a unique address space
• threads in one app cannot read or write memory from another app

T2

T1

T3

App

T3

T5

T4

T6

App

T2

Exploring Android internals with ADB 23 Copyright © 2011-2022, 2net Ltd

File separation
• Each App is assigned a unique UID by package manager

• Linux user id == Android application ID
• Each app has a place to put private files: /data/data/<package name>

User ID
dumpsys package packages

[...]

Package [com.android.camera2] (c3f65c):

userId=10080

[...]

File permissions
ls -l /data/data/com.android.camera2/

total 24

drwxrws--x 3 u0_a80 u0_a80_cache 4096 2022-10-25 13:54 cache

drwxrws--x 2 u0_a80 u0_a80_cache 4096 2022-10-25 12:22 code_cache

drwxrwx--x 2 u0_a80 u0_a80 4096 2022-10-25 13:54 shared_prefs

Exploring Android internals with ADB 24 Copyright © 2011-2022, 2net Ltd

SELinux
• Another layer of security

• Each process has an SELinux context, shown with ps -Z:

ps -AZ

u:r:platform_app:s0:c512,c768 u0_a98 753 373 14257512 225728 do_epoll_wait 0 S com.android.systemui

u:r:priv_app:s0:c512,c768 u0_a91 1090 373 13993028 153572 do_epoll_wait 0 S com.android.launcher3

u:r:system_app:s0 system 1890 373 13838600 86012 do_epoll_wait 0 S com.android.localtransport

u:r:untrusted_app_25:s0:c512,c768 u0_a86 2282 373 13890380 143056 do_epoll_wait 0 S com.android.deskclock

• Each file also has an SELinux context ls -Z:

ls -Z /data/data/com.android.camera2

u:object_r:app_data_file:s0:c80,c256,c512,c768 cache

u:object_r:app_data_file:s0:c80,c256,c512,c768 code_cache

u:object_r:app_data_file:s0:c80,c256,c512,c768 shared_prefs

Exploring Android internals with ADB 25 Copyright © 2011-2022, 2net Ltd

Demo time

Processes, UIDs, GIDs, and file permissions

Exploring Android internals with ADB 26 Copyright © 2011-2022, 2net Ltd

More about the ADB shell
• user build: always shell

$ id

uid=2000(shell) gid=2000(shell) [...]

• userdebug build: start as shell, but can switch user (su) to root

$ id

uid=2000(shell) gid=2000(shell) [...]

$ su

id

uid=0(root) gid=0(root)

• eng build: always root

id

uid=0(root) gid=0(root)

Exploring Android internals with ADB 27 Copyright © 2011-2022, 2net Ltd

Command-line tools
• Most of the command line tools are implemented in toybox

• /system/bin/toybox is a multi-call binary that implements about 200 utilities, type
toybox to get the list

$ toybox

[acpi base64 basename blkdiscard blkid blockdev cal cat chattr chcon chgrp chmod chown chroot

chrt cksum clear cmp comm cp cpio cut date dd devmem df diff dirname dmesg dos2unix du echo

egrep env expand expr fallocate false fgrep file find flock fmt free freeramdisk fsfreeze fsync

getconf getenforce getfattr getopt grep groups gunzip gzip head help hostname hwclock i2cdetect

i2cdump i2cget i2cset iconv id ifconfig inotifyd insmod install ionice iorenice iotop kill

killall ln load_policy log logname losetup ls lsattr lsmod lsof lspci lsusb makedevs md5sum

microcom mkdir mkfifo mknod mkswap mktemp modinfo modprobe more mount mountpoint mv nbd-client

nc netcat netstat nice nl nohup nproc nsenter od partprobe paste patch pgrep pidof ping ping6

pivot_root pkill pmap printenv printf prlimit ps pwd pwdx readelf readlink realpath renice

restorecon rev rfkill rm rmdir rmmod rtcwake runcon sed sendevent seq setenforce setfattr setsid

sha1sum sha224sum sha256sum sha384sum sha512sum sleep sort split stat strings stty swapoff

swapon sync sysctl tac tail tar taskset tee test time timeout top touch tr traceroute traceroute6

true truncate tty tunctl uclampset ulimit umount uname uniq unix2dos unlink unshare uptime

usleep uudecode uuencode uuidgen vconfig vi vmstat watch wc which whoami xargs xxd yes zcat

Exploring Android internals with ADB 28 Copyright © 2011-2022, 2net Ltd

• Introduction

• System Services

• Native Services

• Sandboxing

• System properties

Exploring Android internals with ADB 29 Copyright © 2011-2022, 2net Ltd

System properties
• System properties are a global store of name/value pairs, used for:

Build information
getprop ro.build.version.release

13

Status
getprop init.svc.adbd

[init.svc.adbd]: [running]

Configuration set at build time
getprop ro.sf.lcd_density

420

Local configuration
getprop persist.sys.timezone

Europe/London

Exploring Android internals with ADB 30 Copyright © 2011-2022, 2net Ltd

Where next?

• The best way to learn about Android is to build it and modify it

• The Android operating system is open source, available via AOSP (Android Open
Source Project)

• Instructions about building here(*):
https://source.android.com/docs/setup/start/initializing

• AOSP community
• The AOSP and AAOS Meetup: https://aospandaaos.github.io/
• AOSP Developers Community

https://aosp-developers-community.github.io/

OK, building AOSP requires lots of hardware (32 GB RAM, 200 GB disk, 8 or more cores) and time (many
hours), but it’s still worth it

Exploring Android internals with ADB 31 Copyright © 2011-2022, 2net Ltd

https://source.android.com/docs/setup/start/initializing
https://aospandaaos.github.io/
https://aosp-developers-community.github.io/

Questions?

Slides: https://2net.co.uk/slides/android-internals-csimmonds-droidcon-london-2022.pdf

Training: https://2net.co.uk/training/embedded-android

@2net_software

https://uk.linkedin.com/in/chrisdsimmonds/

Exploring Android internals with ADB 32 Copyright © 2011-2022, 2net Ltd

https://2net.co.uk/slides/android-internals-csimmonds-droidcon-london-2022.pdf
https://2net.co.uk/training/embedded-android
https://uk.linkedin.com/in/chrisdsimmonds/

	Introduction
	System services
	Native services
	The application sandbox
	System properties
	Conclusion

