
Evolution of an Android 
OTA management 

application

Diego Rondini - Kynetics



© Kynetics, www.kynetics.com

About Kynetics
Kynetics is company that provides:

● OSes for embedded systems
○ Android based OSes
○ Open Embedded (Yocto) based OSes

● Over the Air (Wire) technology (Update Factory) for remotely update 
embedded devices based on Eclipse hawkBit.

○ Cloud Based Management platform
○ OS provisioning for Development and Production
○ Android Apps

Offices in Padova and Santa Clara (CA).
Member of the Eclipse Foundation.



© Kynetics, www.kynetics.com

About me
Diego Rondini

● Embedded Engineer
● started doing embedded Android 1.5 / 1.6 

in 2011
● experience with Linux Yocto / 

Openembedded



© Kynetics, www.kynetics.com

Agenda

Android OTA management application

1. Brief history
2. Overview
3. Interfacing with Android AOSP system APIs



© Kynetics, www.kynetics.com

1. Brief history



© Kynetics, www.kynetics.com

Remote Update Management Platform

Embedded Linux 
Conference 2017



© Kynetics, www.kynetics.com

Eclipse hawkBit: Management UI



© Kynetics, www.kynetics.com

Embedded update management: Android

Android AOSP Yocto Linux

Update file format ✓ ❌

Update installation 

system (Recovery / 

Update Engine)

✓ ❌

Download of update ❌ ❌

Built-in features (integrated by default):



© Kynetics, www.kynetics.com

On the device side
Linux:

● SWUpdate
● RAUC

Android:

● No library to communicate using hawkBit DDI API
● No existing open source Android application



© Kynetics, www.kynetics.com

2. Overview



© Kynetics, www.kynetics.com

Architecture components



© Kynetics, www.kynetics.com

Library
1. Reusable
2. Independent from Android
3. Manages hawkBit DDI communication
4. [2017] Initially written in Java
5. [2020] Rewritten in Kotlin 
6. [2021] Contributed as Eclipse Hara “hara-ddiclient”



© Kynetics, www.kynetics.com

Eclipse Hara
● Fill the gap that was intentionally left out by the hawkBit project
● Provide an open source reference implementation of an 

hawkBit DDI client
○ Define architecture components and their IPC 

● Develop hawkBit clients for different frameworks, OSes and 
architectures

○ Android
○ Linux pure Java

● EPLv2 license
https://www.tldrlegal.com/license/gnu-general-public-license-v2

https://www.tldrlegal.com/license/gnu-general-public-license-v2


© Kynetics, www.kynetics.com

Android Update Service
Implements an Android OTA management application

● background service
● communicates using hawkBit DDI API
● manages state machine
● handles installation of different type of updates (applications, OSes)
● offers integration with third-party applications via APIs

○ configuration
○ state
○ notifications

● EPLv2 license
https://www.tldrlegal.com/license/gnu-general-public-license-v2

https://www.tldrlegal.com/license/gnu-general-public-license-v2


© Kynetics, www.kynetics.com

The Device drives the Update Logic 
● How should the devices react to connection timeouts/pools in terms of user 

experience?
● What if the board has an outage during an update?
● Can I handle single image update?
● What about A/B updates?
● How should the device orchestrate effectively, the server hawkBit states of an 

entire update cycle? (Device action feedbacks)
● How should the device handle the update of the client software itself?
● What if an update artifact is malformed?
● What if an update artifact is not signed correctly..
● Soft updates vs Forced updates
● ...



© Kynetics, www.kynetics.com

Remote OTA in a nutshell 



© Kynetics, www.kynetics.com

3. Interfacing with Android system APIs



© Kynetics, www.kynetics.com

● Android Studio IDE
● Emulator
● APIs
● debugging tools

Android SDK: user perspective



© Kynetics, www.kynetics.com

Android SDK: OS perspective
● Android SDK APIs use the background services provided by the 

system_server
● SDK can be generated by the AOSP buildsystem
● customize SDK to expose new or modified APIs

Android apps can access public but restricted system APIs by being installed in 
the OS (vendor partition) or by being signed with the platform key:
https://www.kynetics.com/docs/2018/Accessing_Android_system_APIs/

Android apps can access non-public system APIs by using a modified SDK 
(android.jar).

https://www.kynetics.com/docs/2018/Accessing_Android_system_APIs/


© Kynetics, www.kynetics.com

UF Android Update Service
UF Update Service is an Android application that manages:

● App Apk updates
○ PackageManager APIs:

https://developer.android.com/reference/android/content/pm/PackageManager

● OS single copy updates
○ RecoverySystem APIs:

https://developer.android.com/reference/kotlin/android/os/RecoverySystem

● OS double copy A/B updates
○ UpdateEngine:

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/android11-release/c
ore/java/android/os/UpdateEngine.java

https://developer.android.com/reference/android/content/pm/PackageManager
https://developer.android.com/reference/kotlin/android/os/RecoverySystem
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/android11-release/core/java/android/os/UpdateEngine.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/android11-release/core/java/android/os/UpdateEngine.java


© Kynetics, www.kynetics.com

Installing apks with PackageManager
● Support for installing and updating apks
● Use of Android PackageManager

https://github.com/Kynetics/uf-android-client/tree/v1.4.1/uf-client-service/src/main/k
otlin/com/kynetics/uf/android/update/application

We use android.content.pm.PackageManager for:

1. getting metadata from an apk ( version, package name )
2. install or update an apk (android.content.pm.PackageInstaller)
3. handle installation errors

https://github.com/Kynetics/uf-android-client/tree/v1.4.1/uf-client-service/src/main/kotlin/com/kynetics/uf/android/update/application
https://github.com/Kynetics/uf-android-client/tree/v1.4.1/uf-client-service/src/main/kotlin/com/kynetics/uf/android/update/application


© Kynetics, www.kynetics.com

OTA updates
Devices need OS updates to:

● provide new features
● fix bugs
● fix security issues

While nowadays “OTA” is used for any kind of updates, the terms originally 
referred to “Over The Air” updates, so updates distributed over internet.



© Kynetics, www.kynetics.com

Single Copy 
● A single copy of the system is present
● An independent bootable system is required to manage the update
● Cooperation with the bootloader is necessary to boot in recovery mode
● Update client downloads the update artifact in a separate partition
● System is rebooted into recovery mode and the update is installed



© Kynetics, www.kynetics.com

Double Copy 
● Each slot (set of partitions) is a full copy of the whole OS
● A slot should be able to boot, run, and update the inactive copy. 
● A bootable slot that was not marked as successful (after several attempts were 

made to boot from it) should be marked as unbootable by the bootloader, including 
changing the active slot to another bootable slot (normally to the slot running 
immediately before the attempt to boot into the new, active one). 
https://source.android.com/devices/tech/ota/ab

https://source.android.com/devices/tech/ota/ab


© Kynetics, www.kynetics.com

Device Update Approaches
● Double copy: 

○ The devices features two copies of the 
Application/OS/RootFS 

○ Cooperation with bootloader to decide 
which copy should be booted

● + fallback
● + easy to implement
● - takes double space

● Single copy: 
○ A separate upgrade OS is required
○ Cooperation with the bootloader to boot in 

update mode

● + takes little space
● - no fallback

25



© Kynetics, www.kynetics.com

Installing single-copy OTA with RecoverySystem
● Support for installing single-copy Android OTA
● Installation initialized from main Android, but happens in Android Recovery

https://github.com/Kynetics/uf-android-client/blob/v1.4.1/uf-client-service/src/main/
kotlin/com/kynetics/uf/android/update/system/SingleCopyOtaInstaller.kt

We use android.os.RecoverySystem to:

1. verify signature of OTA package
2. start installation of OTA package

Installation success is managed by checking Recovery log files

https://github.com/Kynetics/uf-android-client/blob/v1.4.1/uf-client-service/src/main/kotlin/com/kynetics/uf/android/update/system/SingleCopyOtaInstaller.kt
https://github.com/Kynetics/uf-android-client/blob/v1.4.1/uf-client-service/src/main/kotlin/com/kynetics/uf/android/update/system/SingleCopyOtaInstaller.kt


© Kynetics, www.kynetics.com

Installing double-copy OTA with UpdateEngine
● Support for installing double-copy Android OTA (Android ≥ 8.x Oreo)
● Installation happens “live” from main Android
● A → B switch happens at next reboot

https://github.com/Kynetics/uf-android-client/blob/v1.4.1/uf-client-service/src/main/
kotlin/com/kynetics/uf/android/update/system/ABOtaInstaller.kt

We use android.os.UpdateEngine for:

1. start installation of OTA package
2. monitor installation progress
3. handle installation errors

https://github.com/Kynetics/uf-android-client/blob/v1.4.1/uf-client-service/src/main/kotlin/com/kynetics/uf/android/update/system/ABOtaInstaller.kt
https://github.com/Kynetics/uf-android-client/blob/v1.4.1/uf-client-service/src/main/kotlin/com/kynetics/uf/android/update/system/ABOtaInstaller.kt


© Kynetics, www.kynetics.com

System applications / Hidden APIs
PackageManager & RecoverySystem require system permissions:
“Requires the android.Manifest.permission#REBOOT permission. Not for use by 
third-party applications.”

/**
 * UpdateEngine handles calls to the update engine which takes care of A/B OTA
 * updates. It wraps up the update engine Binder APIs and exposes them as
 * SystemApis, which will be called by the system app responsible for OTAs.
 * On a Google device, this will be GmsCore.
 */

public but restricted APIs
non-public APIs



© Kynetics, www.kynetics.com

Android hidden-API vs os-mock
Android Hidden APIs project

Build of Android SDK’ android.jar that exposes internal and hidden APIs:
https://github.com/anggrayudi/android-hidden-api
CON: needs installing custom file in Android SDK folder

OS Mock library

https://github.com/Kynetics/uf-android-client/tree/v1.4.1/os-mock

1. mocked the UpdateEngine hidden Android APIs
2. used os-mock library only at build time
3. UF Android Update Service uses Android framework at runtime

https://github.com/anggrayudi/android-hidden-api
https://github.com/Kynetics/uf-android-client/tree/v1.4.1/os-mock


© Kynetics, www.kynetics.com

Thank you.
Some links:

● Eclipse Hara
○ https://github.com/eclipse/hara-ddiclient/
○ https://projects.eclipse.org/projects/iot.hawkbit.hara

● Update Factory:
○ https://github.com/Kynetics/uf-android-client
○ https://docs.updatefactory.io/

● Kynetics website: www.kynetics.com
● Kynetics Open source projects: https://github.com/kynetics
● Eclipse hawkBit: https://www.eclipse.org/hawkbit/

https://github.com/eclipse/hara-ddiclient/
https://projects.eclipse.org/projects/iot.hawkbit.hara
https://github.com/Kynetics/uf-android-client
https://docs.updatefactory.io/
http://www.kynetics.com
https://github.com/kynetics
https://www.eclipse.org/hawkbit/

