
POC with the VIM3 reference board

Broadcast Radio in AAOS

Conjure is a product-focused digital studio

We help ambitious brands and organisations differentiate their digital
products and services through outstanding strategy, innovation, design and
technical execution.

We engineer extraordinary digital experiences for a better future.

Interfacing
The Future

Introducing Conjure…

Some of our awards…

AURA
powered by Android

AURA
Powered by
Android Automotive

Automotive
Meets Android

Our work

We are on the
frontline of innovation

POC with the VIM3 reference board

Broadcast Radio in AAOS

VIM3
Reference Board(?)

Broadcast Radio
What is Broadcast Radio?

1. Audio transmitted via radio waves

2. AM, FM, DAB, HD Radio,...

3. Additional data via RDS, DLS,...

4. Challenges

○ Real time, location-dependent, moving cars

○ Different standards across the world

Broadcast Radio
Let’s focus on FM Radio

(in Europe)

1. 87.5 - 108.0 MHz (100 kHz spacing)

○ Scan & Tune -> 2x FM-Receiver

2. RDS - Radio Data System

○ PI - Program Identifier

○ PS - Program Service Name

○ Program Type, Clock, Frequencies, Radio Text,
Traffic announcements,...

Hardware Setup

Hardware Setup
Current Status

1. Only a single FM tuner

2. Arduino scans for FM stations once after

startup and then sends this list every 10s

via CAN

3. No other features supported

4. Only the happy path implemented (no error

handling on most layers)

5. It’s a POC :)

Hardware Setup
Decisions, decisions,...

1. CAN is common in Automotive

2. Android Automotive supports CAN

3. Linux SocketCAN - Network device can be

accessed by multiple applications

4. Separation of concerns

○ Arduino can be updated easily

○ 1…x tuners

5. VIM3 has ready to go CAN configuration

for Ubuntu

Software Setup
VIM3 running AA 12

1. System Components for Broadcast Radio

2. BroadcastRadioService

3. Challenges with VIM3

Software - VIM3 Android Automotive

Source: https://source.android.com/docs/devices/automotive/broadcast-radio

1. Radio App (should) implement Media

Session and Media Browser Service

2. RadioManager is the system service to

access the Radio API
context.getSystemService(Context.RADIO_SERVICE)

3. BroadcastRadioService system service

started by SystemServer

4. HAL

Software - VIM3 Android Automotive

Source: https://source.android.com/docs/devices/automotive/broadcast-radio

CAN Radio Module

CAN HAL

1. Custom BroadcastRadioService

implementation

2. Default Android CAN HAL

HAL responsibilities?

1. BroadcastRadioHal

○ IBroadcastRadio.hal

○ ITunerSession.hal

○ ….

CAN Radio Module

CAN HAL

CAN Radio Module

Broadcast Radio HAL

CAN HAL

2. CAN BroadcastRadioService

○ Seek, scan, step, tune are shifted to the

external Arduino Radio Module

○ SocketCAN implementation in Service

BroadcastRadioService

1. BroadcastRadioService.java

○ Extends SystemService

○ Loads the modules

○ Acts as proxy

BroadcastRadioService

2. CAN service implementation

○ BroadcastRadioService
■ Listens for CAN service

registration

■ Loads RadioModule

○ RadioModule

■ Provides information
(RadioManager.ModuleProperties)

■ Opens TunerSession

■ Brings CAN interface up

○ TunerSession
■ Extends ITuner.stub

■ Communicates via CAN

Where to find what

1. Radio App
/packages/apps/Car/Radio/

2. RadioManager
/frameworks/base/core/java/android/hardware/radio/

3. BroadcastRadioService
/frameworks/base/services/core/java/com/android/server/

broadcastradio/

4. BroadcastRadio HAL
/hardware/interfaces/broadcastradio/

5. CAN HAL
/hardware/interfaces/automotive/can/

How to add the right packages

● Example can be found at
/device/generic/car/common/car.mk

● Modify /device/amlogic/yukawa/yukawa.mk

● car.mk

● can.mk https://github.com/linux-can/can-utils

https://github.com/linux-can/can-utils

Challenges with the VIM3

● Poor documentation

○ Documentation got migrated to a new system just

when I started working with it

● AOSP Kernel has no device tree configuration for CAN

on VIM3

● AOSP Kernel has no drivers for GPIO interrupts

● Ubuntu Kernel has (wrong) frequency hardcoded in

mcp2515 driver

● Ubuntu Kernel uses custom device-tree property for

GPIO interrupt (int-gpio) pin configuration

Kernel

● GPIO

○ pinctrl-meson.c

○ irq-meson.c

● CAN

○ mcp251x.c

● Device tree

● Kernel Configuration

Device Tree

● meson-g12b-a311d-khadas-vim3-android.dts

● meson-g12-common.dtsi

● Disable i2c3 and uart_C

● Add can0 to spicc1 —>

Demo
Time to see it in Action

Arduino Serial Monitor

ifconfig

candump

Radio

Radioplayer

Radioplayer

Simon Osim, Head of Technology

simon.osim@conjure.co.uk

+43 (0)664 40 41 7 41

mailto:simon.osim@conjure.co.uk

