
The AOSP Build System

Chris Simmonds

Embedded Linux Conference Europe 2023

The AOSP Build System 1 Copyright © 2011-2023, 2net Ltd

About Chris Simmonds

• Consultant and trainer
• Author of Mastering Embedded Linux Programming
• Working with embedded Linux since 1999
• Android since 2009
• Speaker at many conferences and workshops

"Looking after the Inner Penguin" blog at https://2net.co.uk/

Mastodon: @csimmonds@fosstodon.org https://fosstodon.org/@csimmonds

https://uk.linkedin.com/in/chrisdsimmonds/

The AOSP Build System 2 Copyright © 2011-2023, 2net Ltd

https://2net.co.uk/
https://fosstodon.org/@csimmonds
https://uk.linkedin.com/in/chrisdsimmonds/

Agenda

• The AOSP build system

• Soong

• Kati

• Ninja

• Bazel

The AOSP Build System 3 Copyright © 2011-2023, 2net Ltd

The AOSP build system

• AOSP build system is similar to others (OpenEmbedded, Buildroot), with its own
peculiarities

• AOSP is a huge project (>50 MLOC of C++, Rust, Java, Kotlin)

• The AOSP build system has evolved over time into something quite unique

• This talk is based on Android 13 - it will probably all change in Android 14 as part of
the migration to Bazel (maybe I’ll come back next year to talk about that :-))

Note: it does not include building a Linux kernel, bootloader, or any other ancillary binaries. It’s up to the you (or
the SoC vendor) to piece it all together (resulting in some truly weird stuff)

The AOSP Build System 4 Copyright © 2011-2023, 2net Ltd

Getting AOSP: repo

• AOSP is a collection of git repositories (> 1100 in T/13)

• First, get a manifest listing the git trees to clone, optionally specifying a version tag
with -b:

$ repo init -u https://android.googlesource.com/platform/manifest -b android-13.0.0_r35

• Then clone the git trees

• you get ALL the packages in one go (150GB), rather downloading on demand as in
OpenEmbedded

$ repo sync

The AOSP Build System 5 Copyright © 2011-2023, 2net Ltd

Selecting and building a target product
• Set up the shell environment

$ source build/envsetup.sh

• Select the target using lunch (a shell function defined in envsetup.sh)

$ lunch aosp_cf_x86_64_phone-userdebug

• Each target is defined by an AndroidProduct.mk e.g. aosp_cf_x86_64_phone-userdebug

comes from device/google/cuttlefish/AndroidProduct.mk:

COMMON_LUNCH_CHOICES := aosp_cf_x86_64_phone-userdebug

• Start the build:

$ m

• Then have a coffee, have another coffee, take a vacation, ...

The AOSP Build System 6 Copyright © 2011-2023, 2net Ltd

Outputs
• Each product lists the Android modules to build in Makefile variable PRODUCT_PACKAGES

PRODUCT_PACKAGES += CuttlefishService vsoc_input_service

• ... which you can dump using get_build_var:

$ get_build_var PRODUCT_PACKAGES
[...] sample_camera_extensions.xml CuttlefishService vsoc_input_service e2fsck [...]

• The final results are image files in out/target/product/[device name]

$ cd out/target/product/vsoc_x86_64
$ ls *.img
boot.img
ramdisk.img
super.img
system.img
vendor.img
[...]

• Typically you flash these to the device using fastboot

The AOSP Build System 7 Copyright © 2011-2023, 2net Ltd

Recipes

• Android modules are defined in recipes in one of two formats

• Android.bp

• written in blueprint, introduced in O/8

• T/13 has > 8000 Android.bp files

• Android.mk

• written in Makefile format

• deprecated, but still hanging around

• in T/13 there are about 1000

The AOSP Build System 8 Copyright © 2011-2023, 2net Ltd

The build tools

There are three main tools:

• soong: parses Android.bp files and generates ninja manifests (and some makefile
fragments)

• kati: parses Android.mk and all the other makefile fragments and generates more
ninja manifests

• ninja: parses the ninja manifests, generates the dependency tree for the target to
built and schedules jobs

Maybe I can make it simpler ...

The AOSP Build System 9 Copyright © 2011-2023, 2net Ltd

Kati

Genetically-engineered Augment,
follower of Khan Noonien Singh

The AOSP Build System 10 Copyright © 2011-2023, 2net Ltd

Kati
Kahn Noonian Singh

Nothing to do this this story

The AOSP Build System 11 Copyright © 2011-2023, 2net Ltd

Kati
Kahn Noonian Singh

Nothing to do this this story

The AOSP Build System 12 Copyright © 2011-2023, 2net Ltd

Kati
Dr Noonian Soong

AI genius, inventor
of Data

The AOSP Build System 13 Copyright © 2011-2023, 2net Ltd

Kati

Data is an android but not
"Android (tm)" - as far as we know

Soong

The AOSP Build System 14 Copyright © 2011-2023, 2net Ltd

Kati

Also not part of
this story

Soong

The AOSP Build System 15 Copyright © 2011-2023, 2net Ltd

Kati Soong Ninja

Japanese assassin

The AOSP Build System 16 Copyright © 2011-2023, 2net Ltd

Kati

Ninja

Soong

The AOSP Build System 17 Copyright © 2011-2023, 2net Ltd

Kati

Ninja

Soong

Android

The AOSP Build System 18 Copyright © 2011-2023, 2net Ltd

How did we get here?
• 2008 C/1.5: GNU Make: single Makefile composed at build time from fragments

(*.mk) (ref: Recursive Make Considered Harmful) But, Make does not scale well: slow
to start up, even if there is no work to do; no progress indication

• 2016 N/7: kati and ninja

Kati implements the logic built into makefiles and outputs a dependency tree as a
ninja manifest

Ninja schedules jobs to reach the goal - showing progress

• 2017 O/8: soong

Soong was intended as a replacement for makefiles and Kati. New format: Blueprint

Progress of Soong has been slow: in T/13 there are still 1000’s of makefile fragments

• 2023 U/14 (probably): Bazel

How to solve a problem with software architecture? Add another layer

The AOSP Build System 19 Copyright © 2011-2023, 2net Ltd

• The AOSP build system

• Soong

• Kati

• Ninja

• Bazel

The AOSP Build System 20 Copyright © 2011-2023, 2net Ltd

Soong

• Soong reads Android.bp files written in Blueprint language

• The Blueprint language is "JSON-like", and also similar to Bazel BUILD files

• Blueprint is declarative (no build logic)

• The build logic is implemented in soong modules, written in go

• Code: $AOSP/build/soong

• Doc $AOSP/build/soong/README.md

The AOSP Build System 21 Copyright © 2011-2023, 2net Ltd

Starting the build

The build is started with m, mm, mmm, or make, which are implemented in build/envsetup.sh

function get_make_command()

{

If we're in the top of an Android tree, use soong_ui.bash instead of make

if [-f build/soong/soong_ui.bash]; then

Always use the real make if -C is passed in

for arg in "$@"; do

if [[$arg == -C*]]; then

echo command make

return

fi

done

echo build/soong/soong_ui.bash --make-mode

else

echo command make

fi

}

function make()

{

_wrap_build $(get_make_command "$@") "$@"

}

If cwd is $AOSP, then make == m, otherwise make == make (!)

The AOSP Build System 22 Copyright © 2011-2023, 2net Ltd

m, mm and mmm

Builds modules in either Android.bp or Android.mk files

m or make build all modules for target (default droid)
mm unconditionally build the module in the cwd
mmm dir1,dir2,... unconditionally build modules in directory list

The droid target for m and make invoke all tasks needed to generate the final images and
other artifacts

mm and mmm only build the Android.bp and Android.mk files listed

The AOSP Build System 23 Copyright © 2011-2023, 2net Ltd

soong_ui

soong_ui is started by m and friends: it is the driver for the whole build process

Command-line options for soong_ui:

soong_ui
--make-mode simulate make, build a makefile target
--dumpvar-mode dump one makefile variable
--dumpvars-mode print a list of makefile variables

no wildcard allowed in variable names

Code is in build/soong/cmd/soong_ui

get_build_var is a wrapper for dumpvar mode

The AOSP Build System 24 Copyright © 2011-2023, 2net Ltd

Help with make

Help with m targets

$ m help
[...]
m [<goals>]
Common goals are:

clean (aka clobber) equivalent to rm -rf out/
checkbuild Build every module defined in the source tree
droid Default target
nothing Do not build anything, just parse and validate the build structure

java Build all the java code in the source tree
native Build all the native code in the source tree

host Build all the host code (not to be run on a device) in the source tree
target Build all the target code (to be run on the device) in the source tree

[...]

See build/make/Usage.txt for more info

By default it will append -j(nproc + 2) to m

The AOSP Build System 25 Copyright © 2011-2023, 2net Ltd

Example Android.bp

A simplified version of the Android.bp for logcat

system/logging/logcat
|-- Android.bp
|-- logcat.cpp

cc_binary {
name: "logcat",
srcs: ["logcat.cpp"],
shared_libs: ["libbase", "libprocessgroup",],
cflags: ["-Werror"],

}

• The module type is cc_binary

• The module is called logcat

• Has one source file: logcat.cpp
• Links with libraries libbase, and libprocessgroup

• Builds an executable which will be installed into $OUT/system/bin/logcat

The AOSP Build System 26 Copyright © 2011-2023, 2net Ltd

Dependencies

Implicit: libraries, for example, are automatically added as a dependency

Explicit: other dependencies are given using required, followed by the list of modules that
this module depends on

required: ["module1", "module2",],

All dependencies will be build and installed into the staging area before this module is
built

The AOSP Build System 27 Copyright © 2011-2023, 2net Ltd

Blueprint modules

Examples of types of module

cc_binary Native binary
cc_library_shared Shared library
cc_library_static Static library
cc_binary_host Host binary
cc_library_host_shared Host shared library
cc_library_host_static Host static library
java_library (*) Java library
android_app (*) Android app
prebuilt_etc (*) Prebuilt installed into etc
cc_prebuilt_binary (*) Prebuilt installed into bin

(*) Since Q/10

Soong Modules Reference:
m soong_docs

The docs are generated in:
out/soong/docs/soong_build.html

The AOSP Build System 28 Copyright © 2011-2023, 2net Ltd

Soong modules

Soong module types (e.g. cc_binary are registered like this:

build/soong/cc/binary.go: ctx.RegisterModuleType("cc_binary", BinaryFactory)

There are approx 300 module types in T/13

Each module implements logic to build the module type (similar to bbclass in OE)

The AOSP Build System 29 Copyright © 2011-2023, 2net Ltd

Soong outputs

In the first phase, soong parses all Android.bp files and writes build rules to
out/soong/build.ninja

"analyzing Android.bp files and generating ninja file at out/soong/build.ninja"

This is a *big* file: 6 to 10 GiB

Has to be regenerated whenever any Android.bp files are added or changed

At this point, Soong does not know what the build target is, so it parses all Android.bp files,
even if your target does not depend on that module

... takes a long time ...

Also writes install rules to out/soong/Android-[product name].mk in Android.mk format which is
processed by kati later

... and dependencies to out/soong/late-[product name].mk

The AOSP Build System 30 Copyright © 2011-2023, 2net Ltd

Soong log files

Generated each time soong is run

Log rotation 4? not sure out/soong*.log

TBD - describe what you can find in here ...

The AOSP Build System 31 Copyright © 2011-2023, 2net Ltd

• The AOSP build system

• Soong

• Kati

• Ninja

• Bazel

The AOSP Build System 32 Copyright © 2011-2023, 2net Ltd

Kati

• Kati is a GNU Make clone

• upstream code: https://github.com/google/kati

• doc: https://github.com/google/kati/blob/master/INTERNALS.md

• Written specifically to build AOSP

• Parses makefiles into Ninja manifests and variable lists

• Implements the logic encoded in the many Makefile functions and macros

• The binary is bundled with AOSP in prebuilts/build-tools/linux-x86/bin/ckati

The AOSP Build System 33 Copyright © 2011-2023, 2net Ltd

https://github.com/google/kati
https://github.com/google/kati/blob/master/INTERNALS.md

Android.mk

LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE := helloworld-mk
LOCAL_SRC_FILES := helloworld.c
LOCAL_VENDOR_MODULE := true
LOCAL_SHARED_LIBRARIES := liblog

include $(BUILD_EXECUTABLE)

• The module is called helloworld-mk

• Has one source file: helloworld.c

• Links with shared library liblog

• include $(BUILD_EXECUTABLE) brings in the build rules to build an executable which will be
installed into $OUT/system/bin/logcat

Looks a lot like Buildroot

The AOSP Build System 34 Copyright © 2011-2023, 2net Ltd

Dependencies

Implicit: libraires, etc, same as for Android.bp

Explicit: dependencies in Android.mk look like this

LOCAL_REQUIRED_MODULES += gallium_dri

Note that a module in an Android.mk file cannot have a dependency on a module defined
in an Android.bp

The AOSP Build System 35 Copyright © 2011-2023, 2net Ltd

Ninja outputs

Ninja generates a ninja manifest named out/build-[device name].ninja which contains the
build rules to generate the Android modules listed in the *.mk files

e.g. out/build-aosp_cf_x86_64_phone.ninja

... quite a bit file ... 600 to 900 MiB

Also generates a manifest with dependencies for packaging in

out/build-aosp_cf_x86_64_phone-package.ninja

The AOSP Build System 36 Copyright © 2011-2023, 2net Ltd

• The AOSP build system

• Soong

• Kati

• Ninja

• Bazel

The AOSP Build System 37 Copyright © 2011-2023, 2net Ltd

Ninja

• Ninja reads manifests generated by Soong and Kati

• Calculates dependencies for given target

• Schedules jobs needed to reach the target

• Upstream code: https://github.com/google/kati

• Ninja 1.9.0 is bundled in AOSP 13 in prebuilts/build-tools/linux-x86/bin/ninja

The AOSP Build System 38 Copyright © 2011-2023, 2net Ltd

https://github.com/google/kati

Ninja syntax

Here is a basic ninja manifest file (taken from
https://ninja-build.org/manual.html

cflags = -Wall

rule cc
command = gcc $cflags -c $in -o $out

build foo.o: cc foo.c

The main elements are:

Variables: e.g. cflags, dereference using $cflags

Rules: a short name for a command line, e.g. cc

Build statements: declare a relationship between input and output
(i.e. build outputs: rule inputs shows how to generate the output when needed)

Note that variables $in and $out are derived from the build statement

The AOSP Build System 39 Copyright © 2011-2023, 2net Ltd

https://ninja-build.org/manual.html

Running Ninja

Ninja is started from soong_ui (see out/soong.log for exact command line)

prebuilts/build-tools/linux-x86/bin/ninja droid -j 16 -f out/combined-aosp_cf_x86_64_phone.ninja

Note target is droid and -j 16 is the parameter I passed to m

out/combined-aosp_cf_x86_64_phone.ninja brings together all the manifest generated by soong
and kati:

builddir = out
pool highmem_pool
depth = 2

subninja out/build-aosp_cf_x86_64_phone.ninja
subninja out/build-aosp_cf_x86_64_phone-package.ninja
subninja out/soong/build.ninja

Note: subninja includes another .ninja file; the subninja can read and modify variables from
the parent manifest but changes are not seem in the parent scope

The AOSP Build System 40 Copyright © 2011-2023, 2net Ltd

Running ninja directly

Ninja has some useful tools

$ prebuilts/build-tools/linux-x86/bin/ninja -t list
ninja subtools:

browse browse dependency graph in a web browser
clean clean built files

commands list all commands required to rebuild given targets
deps show dependencies stored in the deps log

graph output graphviz dot file for targets
inputs show all (recursive) inputs for a target

path find dependency path between two targets
paths find all dependency paths between two targets
query show inputs/outputs for a path

targets list targets by their rule or depth in the DAG
compdb dump JSON compilation database to stdout

recompact recompacts ninja-internal data structures

Now that we know how soong starts ninja, we can use tools to find useful stuff, e.g.
dependencies (next slide)

The AOSP Build System 41 Copyright © 2011-2023, 2net Ltd

Dependencies
Show dependencies for logcat

$ prebuilts/build-tools/linux-x86/bin/ninja -f out/combined-aosp_cf_x86_64_phone.ninja \
-t query out/target/product/vsoc_x86_64/system/bin/logcat
out/target/product/vsoc_x86_64/system/bin/logcat:

input: rule202069
out/soong/.intermediates/system/logging/logcat/logcat/android_x86_64_silvermont/logcat
out/target/product/vsoc_x86_64/obj/EXECUTABLES/logcat_intermediates/logcat
|| out/target/product/vsoc_x86_64/system/lib64/libprocessgroup.so
|| out/target/product/vsoc_x86_64/system/lib64/libcgrouprc.so

[...]
outputs:
out/target/product/vsoc_x86_64/system/bin/dumpstate
out/target/product/vsoc_x86_64/system/etc/init/dumpstate.rc
device_logcat_all_targets
out/target/product/vsoc_x86_64/obj/PACKAGING/systemimage_intermediates/system.img

[...]

input: lists the input dependencies for logcat

output: lists the things that depend on logcat

For example, dumpstate has a dependency on logcat (see
frameworks/native/cmds/dumpstate/Android.bp)

The AOSP Build System 42 Copyright © 2011-2023, 2net Ltd

Dependency graph 1/2

You can use the graph tool in ninja to create a graph (may take a few minutes)

$ prebuilts/build-tools/linux-x86/bin/ninja -f out/combined-marvin.ninja \
-t graph out/target/product/marvin/system/bin/logcat > ninja-logcat-deps.dot

$ dot -Tpdf -Nshape=box -o ninja-logcat-deps.pdf ninja-logcat-deps.dot

Not as helpful as I had hoped

The AOSP Build System 43 Copyright © 2011-2023, 2net Ltd

Dependency graph 2/2

The AOSP Build System 44 Copyright © 2011-2023, 2net Ltd

• The AOSP build system

• Soong

• Kati

• Ninja

• Bazel

The AOSP Build System 45 Copyright © 2011-2023, 2net Ltd

The shape of things to come?

• How to solve a problem with software architecture? Add another layer

• Intention to replace Kati, Soong, and Ninja with Bazel, starting with U/14

• Currently (in T/13) only kernel build uses Bazel

• For more information about how AOSP will adapt to Bazel, see

• "Welcome Android Open Source Project (AOSP) to the Bazel ecosystem" https://
developers.googleblog.com/2020/11/welcome-android-open-source-project.html

• build/bazel/docs/concepts.md

• build/bazel/docs/internal_concepts.md

The AOSP Build System 46 Copyright © 2011-2023, 2net Ltd

https://developers.googleblog.com/2020/11/welcome-android-open-source-project.html
https://developers.googleblog.com/2020/11/welcome-android-open-source-project.html

Bazel in one slide

WORKSPACE

A WORKSPACE file defines the top level of a project. For AOSP we have
$AOSP/WORKSPACE -> build/bazel/bazel.WORKSPACE. Contains some global configuration

BUILD

Each module is defined in a BUILD file (similar to Android.bp or Android.mk)

Bazel rules (.bzl)

The logic is implemented in .bzl files. For example $AOSP/bazel/rules/cc/cc_binary.bzl

contains the logic to build a C/C++ binary

Starlark BUILD and .bzl files are written in a which is is a Python-like called Starlark.
(properly known as the "Build Language", though it is often simply referred to as
"Starlark")

The AOSP Build System 47 Copyright © 2011-2023, 2net Ltd

Bazel migration

In T/13, there is support to build the Android Common Kernel entirely in Bazel

In U/14, Bazel will replace ninja

The AOSP Build System 48 Copyright © 2011-2023, 2net Ltd

Questions?

Slides at
https://2net.co.uk/slides/elc/aosp-build-eoss-2023.pdf

@2net_software

https://uk.linkedin.com/in/chrisdsimmonds/

The AOSP Build System 49 Copyright © 2011-2023, 2net Ltd

https://2net.co.uk/slides/elc/aosp-build-eoss-2023.pdf
https://uk.linkedin.com/in/chrisdsimmonds/

	Agenda
	The AOSP build system
	Soong
	Kati
	Ninja
	Bazel

