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License

These slides are available under a Creative Commons Attribution-ShareAlike 4.0 license. You can read the full
text of the license here
http://creativecommons.org/licenses/by-sa/4.0/legalcode

You are free to

• copy, distribute, display, and perform the work

• make derivative works

• make commercial use of the work

Under the following conditions

• Attribution: you must give the original author credit

• Share Alike: if you alter, transform, or build upon this work, you may distribute the resulting work only
under a license identical to this one (i.e. include this page exactly as it is)

• For any reuse or distribution, you must make clear to others the license terms of this work
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About Chris Simmonds
• Consultant and trainer
• Author of Mastering Embedded Linux Programming
• Working with embedded Linux since 1999
• Android since 2009
• Speaker at many conferences and workshops

"Looking after the Inner Penguin" blog at https://2net.co.uk/

@2net_software

https://uk.linkedin.com/in/chrisdsimmonds/
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Agenda

• Systemd 101

• Loading services on demand

• Restarting services

• Watchdog

• Resource limits
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Previously ...

• ELC-E 2019: We need to talk about systemd

https://2net.co.uk/slides/elc/systemd-csimmonds-elce-2019.pdf
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This time ...

• Using systemd to boot and manage embedded Linux

• With demos
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Concepts

• Bootstrapping a computer is best expressed as a hierarchy

• some things can’t start until other things have been started

• by expressing dependencies between things you create a tree structure

• systemd just needs to walk the tree to reach a goal, called a target

• Meta information is written in a simple form, called a unit

• Daemons are represented as service units

• We will meet other kinds of unit as we go on
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Units

• All units have a [Unit] section

• Contains a description, reference to documentation and dependencies
on other units

• Example: the Unit section from /lib/systemd/system/dbus.service

[Unit]

Description=D-Bus System Message Bus

Documentation=man:dbus-daemon(1)

Requires=dbus.socket

[...]

https://www.freedesktop.org/software/systemd/man/systemd.unit.html
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Unit dependencies

• Requires: a list of units this unit depends on which must be started as
well

• Wants: a weaker form of Requires: this unit is started even if any in
the list fail

• Conflicts: a negative dependency: the units listed are stopped when
this one is started and, conversely, if one of them is started, this one is
stopped

These all operate on the activation queue
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Order: Before and After

• These keywords determine the order that units are started

• Before: this unit should be started before the units listed

• After: this unit should be started after the units listed

• Example: start a daemon after the network target
[Unit]

Description=Lighttpd Web Server

After=network.target

[...]

• Without Before or After, units are started in no particular order
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Dependencies vs ordering

Unit
B

Unit
A

Unit
C

Requires Requires

Activation queue

A     B     C

Starting Unit A will add A, B and C to the activation queue, but they may run in any order,
even simultaneously
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Dependencies vs ordering

Unit
B

Unit
A

Unit
C

Requires

After
Requires

Activation queue

B     A     C

Now, Unit B must run before Unit A
Unit C can run whenever it likes
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Unit search path

• Systemd searches for units working from most specific to most general
configuration

• /etc/systemd/system: Local configuration

• /run/systemd/system: Runtime configuration

• /lib/systemd/system: Distribution-wide configuration

• To override a unit, just place a unit with the same name earlier in the
sequence (usually /etc/systemd/system)

• To disable a unit, replace it with an empty file or a link to /dev/null
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Service
• A service is a unit that controls a daemon

• Name ends in .service

• Has a [Service] section

• Example, lighttpd.service
[Unit]

Description=Lighttpd Web Server

After=network.target

[Service]

ExecStart=/usr/sbin/lighttpd -f /etc/lighttpd/lighttpd.conf -D

ExecReload=/bin/kill -HUP $MAINPID

https://www.freedesktop.org/software/systemd/man/systemd.service.html
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Service Options

Type of service
Type=simple (default) systemd launches the program in the background

=oneshot run once, do not retart

=forking the daemon runs in the background, e.g. by calling daemon(2)

Starting and restarting the daemon
ExecStart= the program to run

ExecReload= what to do following "systemctl restart"

Environment variable (see systemd.exec(5) for a full list)
MAINPID the PID of the unit's main process
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systemctl

systemctl is a command line interface for systemd. Here are some useful
commands:

Command Description
start [unit] start a unit
stop [unit] stop a unit
enable[unit] install the unit, creating the wants link
disable[unit] uninstall the unit
status [unit] show status of a unit
get-default show default target
list-dependencies list dependency tree

https://www.freedesktop.org/software/systemd/man/systemctl.html
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Systemd in Yocto Project

• Out-of-the-box, Yocto Project uses SystemV init daemon

• To switch to systemd, add this to a suitable conf file

conf/local.conf

INIT_MANAGER = "systemd"
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Demo: start a daemon

called boris

Built using Yocto Project 4.0.1, systemd 250, target qemuarm
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Target

• A Target is a Unit that lists dependencies on other Targets

• Name ends in .target

• Example, /lib/systemd/system/multi-user.target
[Unit]

Description=Multi-User System

Documentation=man:systemd.special(7)

Requires=basic.target

Conflicts=rescue.service rescue.target

After=basic.target rescue.service rescue.target

https://www.freedesktop.org/software/systemd/man/systemd.target.html
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The default target

• At boot, systemd starts default.target

• Usually a symbolic link to the target desired

• Example
/etc/systemd/system/default.target -> /lib/systemd/system/multi-user.target

• Default target may be overridden on kernel command line:
system.unit=<new target>
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Reverse dependencies: WantedBy
• Requires and Wants create outgoing dependencies

• We also have incoming dependencies, which are links from other
units to this unit

• Incoming dependencies are created by WantedBy

• WantedBy appears in the Install section

Example: a server that is started by multi-user.target

[Unit]

Description=A simple daemon

[Service]

ExecStart=/usr/bin/simpledaemon

[Install]

WantedBy=multi-user.target
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Dependencies

Target

Service SocketService

Other
Service Service

WantedBy

Requires Service=

WantedByWantedByIncoming
dependencies

Outgoing
dependencies
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The Install section

• The incoming link is created by systemctl enable

• and deleted by systemctl disable

• The dependency is expressed as a symbolic link in subdirectory
<unit name>.wants

• Example: installing simpledaemon creates this link
$ systemctl enable simpledaemon

$ ls -l /etc/systemd/system/multi-user.target.wants

/etc/systemd/system/multi-user.target.wants/simpledaemon.service ->

/lib/systemd/system/simpledaemon.service
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Preinstalling services in Yocto

• You want some services to be enabled in the system image

• In Yocto, this is handled by the systemd class

simpledaemon.bb

[...]

inherit systemd

SYSTEMD_SERVICE:${PN} = "simpledaemon.service"

[...]

Now the image contains
/etc/systemd/system/multi-user.target.wants -> /lib/systemd/system/simpledaemon.service
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Demo: enable boris at boot
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• Systemd 101

• Loading services on demand

• Restarting services

• Watchdog

• Resource limits
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Loading services on demand
• The socket unit waits for some event, then starts a service when the

event is triggered

• Name ends in .socket

• Example, foo.socket
[Unit]

Description=Start foo.service when a connection is received from TCP port 1234

[Socket]

ListenStream=1234

Accept=no

[Install]

WantedBy=sockets.target

https://www.freedesktop.org/software/systemd/man/systemd.socket.html
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Types of "socket"

• A socket unit can wait on network and local sockets, FIFOs and other
things through the Listen* option in the Socket section

Component Address format Example Connection
ListenStream port number 22 inet or inet6 socket
ListenStream /[path name] /run/socket Local socket
ListenFIFO /[path name] /run/fifo FIFO
ListenSpecial /[path name] /dev/rfkill Device node or sysfs file
ListenNetlink name kobject-uevent AF_NETLINK socket
ListenMessageQueue /[mq name] /messages POSIX message queue
ListenUSBFunction /[ffs mount] /run/ffs_test FunctionFS endpoint
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Starting the service

• By default, a socket starts a service with the same name

• foo.socket starts foo.service

• You can override with Service option
[Socket]

ListenStream=1234

Accept=no

Service=bar
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ListenSpecial example

• ListenSpecial opens the file O_RDONLY (O_RDWR if Writable=yes) and
blocks in epoll waiting for a POLLIN event (i.e. data to read)

systemd-rfkill.socket

[Socket]

ListenSpecial=/dev/rfkill

Writable=yes

The service can get an array of open fds from systemd via
sd_listen_fds

See SYSTEMD/src/rfkill/rfkill.c for implementation
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Service templates

• Some network daemons spawn a copy for each connection (e.g.
sshd)(*)

• indicated by setting Accept=yes in [Socket] section

• Use a service template to create a different service instance for each
connection

• Template names are of the form foo@.service

• the @ is replaced by an instance name when the service is started

(*) replicating the behaviour of inetd and xinetd from days of yore
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Service template example
ssh.socket

[Unit]

Description=OpenBSD Secure Shell server socket

Before=ssh.service

Conflicts=ssh.service

[Socket]

ListenStream=22

Accept=yes

[Install]

WantedBy=sockets.target

ssh@.service

[Unit]

Description=OpenBSD Secure Shell server

Documentation=man:sshd(8) man:sshd_config(5)

After=auditd.service

[Service]

EnvironmentFile=-/etc/default/ssh

ExecStart=-/usr/sbin/sshd -i $SSHD_OPTS

StandardInput=socket

RuntimeDirectory=sshd

RuntimeDirectoryPreserve=yes

RuntimeDirectoryMode=0755

The service is named after the template plus elements of the connection:

$ systemctl status ssh.socket

Triggers: * ssh@0-192.168.4.110:22-192.168.4.28:35406.service
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Demo: starting an ssh daemon
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Timers

• A timer unit is similar to a socket, except the event is time triggered

foo.timer

[Unit]

Description=Wait 30 seconds before running foo.service

[Timer]

OnActiveSec=30sec

[Install]

WantedBy=timers.target

Delays for 30 seconds before running a service

The timer specification can also generate periodic or calendar events

https://www.freedesktop.org/software/systemd/man/systemd.timer.html
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• Systemd 101

• Loading services on demand

• Restarting services

• Watchdog

• Resource limits
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Restarting services

• What happens if a service terminates for some reason?

• systemd has a range of recovery options
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Restart

• Restart is controlled by the Restart option in the [Service] section
Restart=no (default) no restart action

=on-success only restart if exit(0), or on SIGHUP, SIGINT, SIGTERM

=on-failure restart if exit > 0, uncaught signal, watchdog timeout

=on-watchdog restart only in the case watchdog timesout

=on-abort restart only if uncaught signal

=always restart if the service terminates for *any* reason

Example:
[Service]

Restart=on-failure
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Limiting restarts

• Sometimes, restarting the service just causes it to crash again

• You can control this behaviour by setting the maximum number of
restarts that should be attempted in a given period

Example: if this service terminates twice in 30 seconds, leave it in the stopped state

[Unit]

StartLimitBurst=2

StartLimitIntervalSec=30

[Service]

ExecStart=/usr/bin/simpledaemon

Restart=on-failure
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Trying to fix things

• Maybe there is some cleanup that needs to be done, or some remedial
action

• You can tell systemd to run a unit on failure like this:
[Unit]

StartLimitBurst=2

StartLimitIntervalSec=30

OnFailure=simpledaemon-cleanup.service

[Service]

ExecStart=/usr/bin/simpledaemon

Restart=on-failure
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More drastic action

• Maybe the service is critical, and leaving it stopped is not an option

• You can cause a reboot (in the hope that that solves the problem)
[Unit]

FailureAction=reboot
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• Systemd 101

• Loading services on demand

• Restarting services

• Watchdog

• Resource limits
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Watchdog

• A watchdog will cause a service to restart if it times out

Example: restart a service if the watchdog is not pinged within 30s

[Service]

WatchdogSec=30s

Restart=on-watchdog
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Watchdog

• You ping the watchdog using sd_notify (part of libsystemd.so)
#include <systemd/sd-daemon.h>

[...]

sd_notify(0, "WATCHDOG=1");

https://www.freedesktop.org/software/systemd/man/sd_notify.html

Being systematic with Systemd 43 Copyright © 2011-2022, 2net Ltd

https://www.freedesktop.org/software/systemd/man/sd_notify.html


Hardware watchdog

• You can configure systemd to use a hardware watchdog

• systemd will configure the watchdog timeout and then attempt to ping
it within that period (usually at RuntimeWatchdogSec/2)

/lib/systemd/system.conf.d/*.conf, /etc/systemd/system.conf
RuntimeWatchdogSec= watchdog timeout, default "off"

WatchdogDevice= default /dev/watchdog0

https://www.freedesktop.org/software/systemd/man/systemd-system.conf
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• Systemd 101

• Loading services on demand

• Restarting services

• Watchdog

• Resource limits
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Resource limits

• For resilience it is useful to set limits on the resources available to
some daemons

• and take remedial action when they do, e.g. stopping the daemon

• Example, here is a service with CPU quota 20%
[Service]

ExecStart=/usr/bin/simpledaemon

CPUQuota=20%

https://www.freedesktop.org/software/systemd/man/systemd.resource-control.

html

Limits are enforced using cgroups
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Setting a memory resource limit

[Service]

ExecStart=/usr/bin/simpledaemon

MemoryMax=4096K

The limit is enforced here:

$ cat /sys/fs/cgroup/memory/system.slice/eatmem.service/memory.limit_in_bytes

16777216

When the daemon exceeds the limit, it will be killed with SIGKILL

eatmem.service: Main process exited, code=killed, status=9/KILL

eatmem.service: Failed with result 'signal'.
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Questions?

Slides at
https://2net.co.uk/slides/elc/systemd-csimmonds-elce-2022.pdf

@2net_software

https://uk.linkedin.com/in/chrisdsimmonds/
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