
Being systematic with Systemd
systemd for embedded Linux

Chris Simmonds

Embedded Linux Conference Europe 2022

Being systematic with Systemd 1 Copyright © 2011-2022, 2net Ltd

License

These slides are available under a Creative Commons Attribution-ShareAlike 4.0 license. You can read the full
text of the license here
http://creativecommons.org/licenses/by-sa/4.0/legalcode

You are free to

• copy, distribute, display, and perform the work

• make derivative works

• make commercial use of the work

Under the following conditions

• Attribution: you must give the original author credit

• Share Alike: if you alter, transform, or build upon this work, you may distribute the resulting work only
under a license identical to this one (i.e. include this page exactly as it is)

• For any reuse or distribution, you must make clear to others the license terms of this work

Being systematic with Systemd 2 Copyright © 2011-2022, 2net Ltd

http://creativecommons.org/licenses/by-sa/4.0/legalcode

About Chris Simmonds
• Consultant and trainer
• Author of Mastering Embedded Linux Programming
• Working with embedded Linux since 1999
• Android since 2009
• Speaker at many conferences and workshops

"Looking after the Inner Penguin" blog at https://2net.co.uk/

@2net_software

https://uk.linkedin.com/in/chrisdsimmonds/

Being systematic with Systemd 3 Copyright © 2011-2022, 2net Ltd

https://2net.co.uk/
https://uk.linkedin.com/in/chrisdsimmonds/

Agenda

• Systemd 101

• Loading services on demand

• Restarting services

• Watchdog

• Resource limits

Being systematic with Systemd 4 Copyright © 2011-2022, 2net Ltd

Previously ...

• ELC-E 2019: We need to talk about systemd

https://2net.co.uk/slides/elc/systemd-csimmonds-elce-2019.pdf

Being systematic with Systemd 5 Copyright © 2011-2022, 2net Ltd

https://2net.co.uk/slides/elc/systemd-csimmonds-elce-2019.pdf

This time ...

• Using systemd to boot and manage embedded Linux

• With demos

Being systematic with Systemd 6 Copyright © 2011-2022, 2net Ltd

Concepts

• Bootstrapping a computer is best expressed as a hierarchy

• some things can’t start until other things have been started

• by expressing dependencies between things you create a tree structure

• systemd just needs to walk the tree to reach a goal, called a target

• Meta information is written in a simple form, called a unit

• Daemons are represented as service units

• We will meet other kinds of unit as we go on

Being systematic with Systemd 7 Copyright © 2011-2022, 2net Ltd

Units

• All units have a [Unit] section

• Contains a description, reference to documentation and dependencies
on other units

• Example: the Unit section from /lib/systemd/system/dbus.service

[Unit]

Description=D-Bus System Message Bus

Documentation=man:dbus-daemon(1)

Requires=dbus.socket

[...]

https://www.freedesktop.org/software/systemd/man/systemd.unit.html

Being systematic with Systemd 8 Copyright © 2011-2022, 2net Ltd

https://www.freedesktop.org/software/systemd/man/systemd.unit.html

Unit dependencies

• Requires: a list of units this unit depends on which must be started as
well

• Wants: a weaker form of Requires: this unit is started even if any in
the list fail

• Conflicts: a negative dependency: the units listed are stopped when
this one is started and, conversely, if one of them is started, this one is
stopped

These all operate on the activation queue

Being systematic with Systemd 9 Copyright © 2011-2022, 2net Ltd

Order: Before and After

• These keywords determine the order that units are started

• Before: this unit should be started before the units listed

• After: this unit should be started after the units listed

• Example: start a daemon after the network target
[Unit]

Description=Lighttpd Web Server

After=network.target

[...]

• Without Before or After, units are started in no particular order

Being systematic with Systemd 10 Copyright © 2011-2022, 2net Ltd

Dependencies vs ordering

Unit
B

Unit
A

Unit
C

Requires Requires

Activation queue

A B C

Starting Unit A will add A, B and C to the activation queue, but they may run in any order,
even simultaneously

Being systematic with Systemd 11 Copyright © 2011-2022, 2net Ltd

Dependencies vs ordering

Unit
B

Unit
A

Unit
C

Requires

After
Requires

Activation queue

B A C

Now, Unit B must run before Unit A
Unit C can run whenever it likes

Being systematic with Systemd 12 Copyright © 2011-2022, 2net Ltd

Unit search path

• Systemd searches for units working from most specific to most general
configuration

• /etc/systemd/system: Local configuration

• /run/systemd/system: Runtime configuration

• /lib/systemd/system: Distribution-wide configuration

• To override a unit, just place a unit with the same name earlier in the
sequence (usually /etc/systemd/system)

• To disable a unit, replace it with an empty file or a link to /dev/null

Being systematic with Systemd 13 Copyright © 2011-2022, 2net Ltd

Service
• A service is a unit that controls a daemon

• Name ends in .service

• Has a [Service] section

• Example, lighttpd.service
[Unit]

Description=Lighttpd Web Server

After=network.target

[Service]

ExecStart=/usr/sbin/lighttpd -f /etc/lighttpd/lighttpd.conf -D

ExecReload=/bin/kill -HUP $MAINPID

https://www.freedesktop.org/software/systemd/man/systemd.service.html

Being systematic with Systemd 14 Copyright © 2011-2022, 2net Ltd

https://www.freedesktop.org/software/systemd/man/systemd.service.html

Service Options

Type of service
Type=simple (default) systemd launches the program in the background

=oneshot run once, do not retart

=forking the daemon runs in the background, e.g. by calling daemon(2)

Starting and restarting the daemon
ExecStart= the program to run

ExecReload= what to do following "systemctl restart"

Environment variable (see systemd.exec(5) for a full list)
MAINPID the PID of the unit's main process

Being systematic with Systemd 15 Copyright © 2011-2022, 2net Ltd

systemctl

systemctl is a command line interface for systemd. Here are some useful
commands:

Command Description
start [unit] start a unit
stop [unit] stop a unit
enable[unit] install the unit, creating the wants link
disable[unit] uninstall the unit
status [unit] show status of a unit
get-default show default target
list-dependencies list dependency tree

https://www.freedesktop.org/software/systemd/man/systemctl.html

Being systematic with Systemd 16 Copyright © 2011-2022, 2net Ltd

https://www.freedesktop.org/software/systemd/man/systemctl.html

Systemd in Yocto Project

• Out-of-the-box, Yocto Project uses SystemV init daemon

• To switch to systemd, add this to a suitable conf file

conf/local.conf

INIT_MANAGER = "systemd"

Being systematic with Systemd 17 Copyright © 2011-2022, 2net Ltd

Demo: start a daemon

called boris

Built using Yocto Project 4.0.1, systemd 250, target qemuarm

Being systematic with Systemd 18 Copyright © 2011-2022, 2net Ltd

Demo: start a daemon

called boris

Built using Yocto Project 4.0.1, systemd 250, target qemuarm

Being systematic with Systemd 18 Copyright © 2011-2022, 2net Ltd

Demo: start a daemon

called boris

Built using Yocto Project 4.0.1, systemd 250, target qemuarm

Being systematic with Systemd 18 Copyright © 2011-2022, 2net Ltd

Target

• A Target is a Unit that lists dependencies on other Targets

• Name ends in .target

• Example, /lib/systemd/system/multi-user.target
[Unit]

Description=Multi-User System

Documentation=man:systemd.special(7)

Requires=basic.target

Conflicts=rescue.service rescue.target

After=basic.target rescue.service rescue.target

https://www.freedesktop.org/software/systemd/man/systemd.target.html

Being systematic with Systemd 19 Copyright © 2011-2022, 2net Ltd

https://www.freedesktop.org/software/systemd/man/systemd.target.html

The default target

• At boot, systemd starts default.target

• Usually a symbolic link to the target desired

• Example
/etc/systemd/system/default.target -> /lib/systemd/system/multi-user.target

• Default target may be overridden on kernel command line:
system.unit=<new target>

Being systematic with Systemd 20 Copyright © 2011-2022, 2net Ltd

Reverse dependencies: WantedBy
• Requires and Wants create outgoing dependencies

• We also have incoming dependencies, which are links from other
units to this unit

• Incoming dependencies are created by WantedBy

• WantedBy appears in the Install section

Example: a server that is started by multi-user.target

[Unit]

Description=A simple daemon

[Service]

ExecStart=/usr/bin/simpledaemon

[Install]

WantedBy=multi-user.target

Being systematic with Systemd 21 Copyright © 2011-2022, 2net Ltd

Dependencies

Target

Service SocketService

Other
Service Service

WantedBy

Requires Service=

WantedByWantedByIncoming
dependencies

Outgoing
dependencies

Being systematic with Systemd 22 Copyright © 2011-2022, 2net Ltd

The Install section

• The incoming link is created by systemctl enable

• and deleted by systemctl disable

• The dependency is expressed as a symbolic link in subdirectory
<unit name>.wants

• Example: installing simpledaemon creates this link
$ systemctl enable simpledaemon

$ ls -l /etc/systemd/system/multi-user.target.wants

/etc/systemd/system/multi-user.target.wants/simpledaemon.service ->

/lib/systemd/system/simpledaemon.service

Being systematic with Systemd 23 Copyright © 2011-2022, 2net Ltd

Preinstalling services in Yocto

• You want some services to be enabled in the system image

• In Yocto, this is handled by the systemd class

simpledaemon.bb

[...]

inherit systemd

SYSTEMD_SERVICE:${PN} = "simpledaemon.service"

[...]

Now the image contains
/etc/systemd/system/multi-user.target.wants -> /lib/systemd/system/simpledaemon.service

Being systematic with Systemd 24 Copyright © 2011-2022, 2net Ltd

Demo: enable boris at boot

Being systematic with Systemd 25 Copyright © 2011-2022, 2net Ltd

• Systemd 101

• Loading services on demand

• Restarting services

• Watchdog

• Resource limits

Being systematic with Systemd 26 Copyright © 2011-2022, 2net Ltd

Loading services on demand
• The socket unit waits for some event, then starts a service when the

event is triggered

• Name ends in .socket

• Example, foo.socket
[Unit]

Description=Start foo.service when a connection is received from TCP port 1234

[Socket]

ListenStream=1234

Accept=no

[Install]

WantedBy=sockets.target

https://www.freedesktop.org/software/systemd/man/systemd.socket.html

Being systematic with Systemd 27 Copyright © 2011-2022, 2net Ltd

https://www.freedesktop.org/software/systemd/man/systemd.socket.html

Types of "socket"

• A socket unit can wait on network and local sockets, FIFOs and other
things through the Listen* option in the Socket section

Component Address format Example Connection
ListenStream port number 22 inet or inet6 socket
ListenStream /[path name] /run/socket Local socket
ListenFIFO /[path name] /run/fifo FIFO
ListenSpecial /[path name] /dev/rfkill Device node or sysfs file
ListenNetlink name kobject-uevent AF_NETLINK socket
ListenMessageQueue /[mq name] /messages POSIX message queue
ListenUSBFunction /[ffs mount] /run/ffs_test FunctionFS endpoint

Being systematic with Systemd 28 Copyright © 2011-2022, 2net Ltd

Starting the service

• By default, a socket starts a service with the same name

• foo.socket starts foo.service

• You can override with Service option
[Socket]

ListenStream=1234

Accept=no

Service=bar

Being systematic with Systemd 29 Copyright © 2011-2022, 2net Ltd

ListenSpecial example

• ListenSpecial opens the file O_RDONLY (O_RDWR if Writable=yes) and
blocks in epoll waiting for a POLLIN event (i.e. data to read)

systemd-rfkill.socket

[Socket]

ListenSpecial=/dev/rfkill

Writable=yes

The service can get an array of open fds from systemd via
sd_listen_fds

See SYSTEMD/src/rfkill/rfkill.c for implementation

Being systematic with Systemd 30 Copyright © 2011-2022, 2net Ltd

Service templates

• Some network daemons spawn a copy for each connection (e.g.
sshd)(*)

• indicated by setting Accept=yes in [Socket] section

• Use a service template to create a different service instance for each
connection

• Template names are of the form foo@.service

• the @ is replaced by an instance name when the service is started

(*) replicating the behaviour of inetd and xinetd from days of yore

Being systematic with Systemd 31 Copyright © 2011-2022, 2net Ltd

Service template example
ssh.socket

[Unit]

Description=OpenBSD Secure Shell server socket

Before=ssh.service

Conflicts=ssh.service

[Socket]

ListenStream=22

Accept=yes

[Install]

WantedBy=sockets.target

ssh@.service

[Unit]

Description=OpenBSD Secure Shell server

Documentation=man:sshd(8) man:sshd_config(5)

After=auditd.service

[Service]

EnvironmentFile=-/etc/default/ssh

ExecStart=-/usr/sbin/sshd -i $SSHD_OPTS

StandardInput=socket

RuntimeDirectory=sshd

RuntimeDirectoryPreserve=yes

RuntimeDirectoryMode=0755

The service is named after the template plus elements of the connection:

$ systemctl status ssh.socket

Triggers: * ssh@0-192.168.4.110:22-192.168.4.28:35406.service

Being systematic with Systemd 32 Copyright © 2011-2022, 2net Ltd

Demo: starting an ssh daemon

Being systematic with Systemd 33 Copyright © 2011-2022, 2net Ltd

Timers

• A timer unit is similar to a socket, except the event is time triggered

foo.timer

[Unit]

Description=Wait 30 seconds before running foo.service

[Timer]

OnActiveSec=30sec

[Install]

WantedBy=timers.target

Delays for 30 seconds before running a service

The timer specification can also generate periodic or calendar events

https://www.freedesktop.org/software/systemd/man/systemd.timer.html

Being systematic with Systemd 34 Copyright © 2011-2022, 2net Ltd

https://www.freedesktop.org/software/systemd/man/systemd.timer.html

• Systemd 101

• Loading services on demand

• Restarting services

• Watchdog

• Resource limits

Being systematic with Systemd 35 Copyright © 2011-2022, 2net Ltd

Restarting services

• What happens if a service terminates for some reason?

• systemd has a range of recovery options

Being systematic with Systemd 36 Copyright © 2011-2022, 2net Ltd

Restart

• Restart is controlled by the Restart option in the [Service] section
Restart=no (default) no restart action

=on-success only restart if exit(0), or on SIGHUP, SIGINT, SIGTERM

=on-failure restart if exit > 0, uncaught signal, watchdog timeout

=on-watchdog restart only in the case watchdog timesout

=on-abort restart only if uncaught signal

=always restart if the service terminates for *any* reason

Example:
[Service]

Restart=on-failure

Being systematic with Systemd 37 Copyright © 2011-2022, 2net Ltd

Limiting restarts

• Sometimes, restarting the service just causes it to crash again

• You can control this behaviour by setting the maximum number of
restarts that should be attempted in a given period

Example: if this service terminates twice in 30 seconds, leave it in the stopped state

[Unit]

StartLimitBurst=2

StartLimitIntervalSec=30

[Service]

ExecStart=/usr/bin/simpledaemon

Restart=on-failure

Being systematic with Systemd 38 Copyright © 2011-2022, 2net Ltd

Trying to fix things

• Maybe there is some cleanup that needs to be done, or some remedial
action

• You can tell systemd to run a unit on failure like this:
[Unit]

StartLimitBurst=2

StartLimitIntervalSec=30

OnFailure=simpledaemon-cleanup.service

[Service]

ExecStart=/usr/bin/simpledaemon

Restart=on-failure

Being systematic with Systemd 39 Copyright © 2011-2022, 2net Ltd

More drastic action

• Maybe the service is critical, and leaving it stopped is not an option

• You can cause a reboot (in the hope that that solves the problem)
[Unit]

FailureAction=reboot

Being systematic with Systemd 40 Copyright © 2011-2022, 2net Ltd

• Systemd 101

• Loading services on demand

• Restarting services

• Watchdog

• Resource limits

Being systematic with Systemd 41 Copyright © 2011-2022, 2net Ltd

Watchdog

• A watchdog will cause a service to restart if it times out

Example: restart a service if the watchdog is not pinged within 30s

[Service]

WatchdogSec=30s

Restart=on-watchdog

Being systematic with Systemd 42 Copyright © 2011-2022, 2net Ltd

Watchdog

• You ping the watchdog using sd_notify (part of libsystemd.so)
#include <systemd/sd-daemon.h>

[...]

sd_notify(0, "WATCHDOG=1");

https://www.freedesktop.org/software/systemd/man/sd_notify.html

Being systematic with Systemd 43 Copyright © 2011-2022, 2net Ltd

https://www.freedesktop.org/software/systemd/man/sd_notify.html

Hardware watchdog

• You can configure systemd to use a hardware watchdog

• systemd will configure the watchdog timeout and then attempt to ping
it within that period (usually at RuntimeWatchdogSec/2)

/lib/systemd/system.conf.d/*.conf, /etc/systemd/system.conf
RuntimeWatchdogSec= watchdog timeout, default "off"

WatchdogDevice= default /dev/watchdog0

https://www.freedesktop.org/software/systemd/man/systemd-system.conf

Being systematic with Systemd 44 Copyright © 2011-2022, 2net Ltd

https://www.freedesktop.org/software/systemd/man/systemd-system.conf

• Systemd 101

• Loading services on demand

• Restarting services

• Watchdog

• Resource limits

Being systematic with Systemd 45 Copyright © 2011-2022, 2net Ltd

Resource limits

• For resilience it is useful to set limits on the resources available to
some daemons

• and take remedial action when they do, e.g. stopping the daemon

• Example, here is a service with CPU quota 20%
[Service]

ExecStart=/usr/bin/simpledaemon

CPUQuota=20%

https://www.freedesktop.org/software/systemd/man/systemd.resource-control.

html

Limits are enforced using cgroups

Being systematic with Systemd 46 Copyright © 2011-2022, 2net Ltd

https://www.freedesktop.org/software/systemd/man/systemd.resource-control.html
https://www.freedesktop.org/software/systemd/man/systemd.resource-control.html

Setting a memory resource limit

[Service]

ExecStart=/usr/bin/simpledaemon

MemoryMax=4096K

The limit is enforced here:

$ cat /sys/fs/cgroup/memory/system.slice/eatmem.service/memory.limit_in_bytes

16777216

When the daemon exceeds the limit, it will be killed with SIGKILL

eatmem.service: Main process exited, code=killed, status=9/KILL

eatmem.service: Failed with result 'signal'.

Being systematic with Systemd 47 Copyright © 2011-2022, 2net Ltd

Questions?

Slides at
https://2net.co.uk/slides/elc/systemd-csimmonds-elce-2022.pdf

@2net_software

https://uk.linkedin.com/in/chrisdsimmonds/

Being systematic with Systemd 48 Copyright © 2011-2022, 2net Ltd

https://2net.co.uk/slides/elc/systemd-csimmonds-elce-2022.pdf
https://uk.linkedin.com/in/chrisdsimmonds/

	Agenda
	systemd 101
	Loading services on demand
	Restarting services
	Watchdog
	Resource limits

