
How to avoid writing kernel drivers

Chris Simmonds

Embedded Linux Conference Europe 2018

How to avoid writing kernel drivers 1 Copyright © 2011-2018, 2net Ltd

License

These slides are available under a Creative Commons Attribution-ShareAlike 3.0 license. You can read the full
text of the license here
http://creativecommons.org/licenses/by-sa/3.0/legalcode

You are free to

• copy, distribute, display, and perform the work

• make derivative works

• make commercial use of the work

Under the following conditions

• Attribution: you must give the original author credit

• Share Alike: if you alter, transform, or build upon this work, you may distribute the resulting work only
under a license identical to this one (i.e. include this page exactly as it is)

• For any reuse or distribution, you must make clear to others the license terms of this work

How to avoid writing kernel drivers 2 Copyright © 2011-2018, 2net Ltd

http://creativecommons.org/licenses/by-sa/3.0/legalcode

About Chris Simmonds
• Consultant and trainer
• Author of Mastering Embedded Linux Programming
• Working with embedded Linux since 1999
• Android since 2009
• Speaker at many conferences and workshops

"Looking after the Inner Penguin" blog at http://2net.co.uk/

@2net_software

https://uk.linkedin.com/in/chrisdsimmonds/

How to avoid writing kernel drivers 3 Copyright © 2011-2018, 2net Ltd

http://2net.co.uk/
https://uk.linkedin.com/in/chrisdsimmonds/

Agenda

• Device drivers in kernel space

• Device drivers in user space

• Some examples:

• GPIO

• PWM

• I2C

How to avoid writing kernel drivers 4 Copyright © 2011-2018, 2net Ltd

Conventional device driver model

User
space

System call handler

Generic services

Device drivers

Hardware

Application

C library

interrupts

Linux
kernel

How to avoid writing kernel drivers 5 Copyright © 2011-2018, 2net Ltd

How applications interact device drivers
• In Linux, everything is a file 1

• Applications interact with drivers via POSIX functions open(2), read(2),
write(2), ioctl(2), etc

• Two main types of interface:

1. Device nodes in /dev

• For example, the serial driver, ttyS. Device nodes are named
/dev/ttyS0, /dev/ttyS1 ...

2. Driver attributes, exported via sysfs

• For example /sys/class/gpio

1Except network interfaces, which are sockets
How to avoid writing kernel drivers 6 Copyright © 2011-2018, 2net Ltd

Userspace drivers

• Writing kernel device drivers can be difficult

• Luckily, there are generic drivers that that allow you to write most of the
code in userspace

• We will look at three

• GPIO

• PWM

• I2C

How to avoid writing kernel drivers 7 Copyright © 2011-2018, 2net Ltd

A note about device trees

• Even though you are writing userspace drivers, you still need to make
sure that the hardware is accessible to the kernel

• On ARM based systems, this may mean changing the device tree or
adding a device tree overlay (which is outside the scope of this talk)

How to avoid writing kernel drivers 8 Copyright © 2011-2018, 2net Ltd

GPIO: General Purpose Input/Output

• Pins that can be configured as inputs or outputs

• As outputs:

• used to control LEDs, relays, control chip selects, etc.

• As inputs:

• used to read a switch or button state, etc.

• some GPIO hardware can generate an interrupt when the input changes

How to avoid writing kernel drivers 9 Copyright © 2011-2018, 2net Ltd

Two userspace drivers!

• gpiolib1: old, but scriptable interface using sysfs

• gpio-cdev: new, higher performance method using character device
nodes /dev/gpiochip*

1it’s not a library
How to avoid writing kernel drivers 10 Copyright © 2011-2018, 2net Ltd

The gpiolib sysfs interface
• GPIO pins grouped into registers, named gpiochipNN

• Each pin is assigned a number from 0 to XXX

ls /sys/class/gpio/
export gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport

This device has 4 gpio chips
each with 32 pins

Write to this
file to export
a GPIO pin

to user space

Write to this
file to unexport

a GPIO pin
to user space

How to avoid writing kernel drivers 11 Copyright © 2011-2018, 2net Ltd

Inside a gpiochip

/sys/class/gpio/gpiochip0
base device label ngpio power subsystem uevent

The number of GPIO pins (32)

A lable to identify the chip
(gpiochip0)

The starting GPIO number (0)

How to avoid writing kernel drivers 12 Copyright © 2011-2018, 2net Ltd

Exporting a GPIO pin

echo 42 > /sys/class/gpio/export
ls /sys/class/gpio
export gpio42 gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport

If the export is successful, a new
directory is created

How to avoid writing kernel drivers 13 Copyright © 2011-2018, 2net Ltd

Inputs and outputs

ls /sys/class/gpio/gpio42
active_low device direction edge power subsystem uevent value

Set to 1 to invert
input and ouput

Set direction by
writing "out" or
"in". Default "in"

The logic level of the
pin. Change the level
of outputs by writing
"0" or "1"

How to avoid writing kernel drivers 14 Copyright © 2011-2018, 2net Ltd

Interrupts

• If the GPIO can generate interrupts, the file edge can be used to
control interrupt handling

• edge = ["none", "rising", "falling","both"]

• For example, to make GPIO60 interrupt on a falling edge:

• echo falling > /sys/class/gpio/gpio60/edge

• To wait for an interrupt, use the poll(2) function

How to avoid writing kernel drivers 15 Copyright © 2011-2018, 2net Ltd

The gpio-cdev interface

• One device node per GPIO register named /dev/gpiochip*

• Access the GPIO pins using ioctl(2)

• Advantages

• Naming scheme gpiochip/pin rather than uniform but opaque name
space from 0 to XXX

• Multiple pin transitions in single function call without glitches

• More robust handling of interrupts

How to avoid writing kernel drivers 16 Copyright © 2011-2018, 2net Ltd

gpio-cdev example 1/2
/*

* Demonstrate using gpio cdev to output a single bit

* On a BeagleBone Black, GPIO1_21 is user LED 1

*/

#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <fcntl.h>

#include <sys/ioctl.h>

#include <linux/gpio.h>

int main(void)

{

int f;

int ret;

struct gpiohandle_request req;

struct gpiohandle_data data;

How to avoid writing kernel drivers 17 Copyright © 2011-2018, 2net Ltd

gpio-cdev example 2/2

f = open("/dev/gpiochip1", O_RDONLY);

req.lineoffsets[0] = 21;

req.flags = GPIOHANDLE_REQUEST_OUTPUT; /* Request as output */

req.default_values[0] = 0;

strcpy(req.consumer_label, "gpio-output"); /* up to 31 characters */

req.lines = 1;

ret = ioctl(f, GPIO_GET_LINEHANDLE_IOCTL, &req);

/* Note that there is a new file descriptor in req.fd to handle the

GPIO lines */

data.values[0] = 1;

ret = ioctl(req.fd, GPIOHANDLE_SET_LINE_VALUES_IOCTL, &data);

close(f);

return 0;

}

How to avoid writing kernel drivers 18 Copyright © 2011-2018, 2net Ltd

PWM: Pulse-Width Modulation

period

duty_cycle

• Most SoCs have dedicated circuits that can produce a wave with
period and duty cycle

• Two main use cases:

• Dimmable LEDs and backlights

• Servo motors: deflection is proportional to duty cycle

How to avoid writing kernel drivers 19 Copyright © 2011-2018, 2net Ltd

The PWM sysfs interface

ls /sys/class/pwm/pwmchip0
device export npwm power subsystem uevent unexport

Write to this
file to export

a PWM
to user space

Write to this
file to unexport

a PWM
to user space

How to avoid writing kernel drivers 20 Copyright © 2011-2018, 2net Ltd

Exporting a PWM

echo 0 > /sys/class/pwm/pwmchip0/export
ls /sys/class/pwm/pwmchip0
device export npwm power pwm0 subsystem uevent unexport

If the export is successful, a new
directory is created

ls /sys/class/pwm/pwmchip0/pwm0
capture duty_cycle export period power uevent
device enable npwm polarity subsystem unexport

How to avoid writing kernel drivers 21 Copyright © 2011-2018, 2net Ltd

PWM example

• For example, set period to 1 ms (1,000,000 ns) ...

• and duty to 0.5 ms (500,000 ns) ...

• then enable it
echo 1000000 > /sys/class/pwm/pwmchip0/pwm0/period

echo 500000 > /sys/class/pwm/pwmchip0/pwm0/duty_cycle

echo 1 > /sys/class/pwm/pwmchip0/pwm0/enable

How to avoid writing kernel drivers 22 Copyright © 2011-2018, 2net Ltd

I2C: the Inter-IC bus

• Simple 2-wire serial bus, commonly used to connect sensor devices

• Each I2C device has a 7-bit address, usually hard wired

• 16 bus addresses are reserved, giving a maximum of 112 nodes per
bus

• The master controller manages read/write transfers with slave nodes

How to avoid writing kernel drivers 23 Copyright © 2011-2018, 2net Ltd

The i2c-dev driver

• i2c-dev exposes I2C master controllers

• Need to load/configure the i2c-dev driver (CONFIG_I2C_CHARDEV)

• There is one device node per i2c master controller
ls -l /dev/i2c*

crw-rw---T 1 root i2c 89, 0 Jan 1 2000 /dev/i2c-0

crw-rw---T 1 root i2c 89, 1 Jan 1 2000 /dev/i2c-1

• You access I2C slave nodes using read(2), write(2) and ioctl(2)

• Structures defined in usr/include/linux/i2c-dev.h

How to avoid writing kernel drivers 24 Copyright © 2011-2018, 2net Ltd

Detecting i2c slaves using i2cdetect
• i2cdetect, from i2c-tools package, lists i2c adapters and probes

devices

• Example: detect devices on bus 1 (/dev/i2c-1)

i2cdetect -y -r 1

0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- 39 -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- -- UU UU UU UU -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- --

UU = device already handled by kernel driver
0x39 = device discovered at address 0x39

How to avoid writing kernel drivers 25 Copyright © 2011-2018, 2net Ltd

i2cget/i2cset

• i2cget <bus> <chip> <register>: read data from an I2C device

• Example: read register 0x8a from device at 0x39

i2cget -y 1 0x39 0x8a

0x50

• i2cset <bus> <chip> <register>: writedata to an I2C device

• Example: Write 0x03 to register 0x80:

i2cset -y 1 0x39 0x80 3

How to avoid writing kernel drivers 26 Copyright © 2011-2018, 2net Ltd

I2C code example - light sensor, addr 0x39
#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <sys/ioctl.h>

#include <linux/i2c-dev.h>

int main(int argc, char **argv)

int f;

char buf[4];

f = open("/dev/i2c-1", O_RDWR);

ioctl(f, I2C_SLAVE, 0x39) < 0) {

buf[0] = 0x8a; /* Chip ID register */

write(f, buf, 1);

read(f, buf, 1);

printf("ID 0x%x\n", buf [0]);

}

Code: https://github.com/csimmonds/userspace-io-ew2016

How to avoid writing kernel drivers 27 Copyright © 2011-2018, 2net Ltd

https://github.com/csimmonds/userspace-io-ew2016

Other examples

• SPI: access SPI devices via device nodes /dev/spidev*

• USB: access USB devices via libusb

• User defined I/O: UIO

• Generic kernel driver that allows you to write userspace drivers

• access device registers and handle interrupts from userspace

How to avoid writing kernel drivers 28 Copyright © 2011-2018, 2net Ltd

What are you missing?

• User-space drivers are not always the best solution

• User-space programs can be killed; kernel drivers cannot

• Kernel drivers can use advanced locking techniques - spinlocks, rwlocks,
rcu, etc

• Kernel drivers have direct access to DMA channels and interrupts

• A kernel driver can fit in to a subsystem

• Example: controlling an LCD backlight is better done as a kernel PWM
driver so that it can use the common backlight infrastructure

How to avoid writing kernel drivers 29 Copyright © 2011-2018, 2net Ltd

• Questions?

How to avoid writing kernel drivers 30 Copyright © 2011-2018, 2net Ltd

	Agenda
	GPIO
	PWM
	I2C
	Conclusion

