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License

These slides are available under a Creative Commons Attribution-ShareAlike 4.0 license. You can read the full
text of the license here
http://creativecommons.org/licenses/by-sa/4.0/legalcode

You are free to

• copy, distribute, display, and perform the work

• make derivative works

• make commercial use of the work

Under the following conditions

• Attribution: you must give the original author credit

• Share Alike: if you alter, transform, or build upon this work, you may distribute the resulting work only
under a license identical to this one (i.e. include this page exactly as it is)

• For any reuse or distribution, you must make clear to others the license terms of this work
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About Chris Simmonds
• Consultant and trainer
• Author of Mastering Embedded Linux Programming
• Working with embedded Linux since 1999
• Android since 2009
• Speaker at many conferences and workshops

"Looking after the Inner Penguin" blog at https://2net.co.uk/

Mastodon: @csimmonds@fosstodon.org
https://fosstodon.org/@csimmonds

https://uk.linkedin.com/in/chrisdsimmonds/
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What is embedded computing?

• No formal definition

• Basically, "code running on a computer inside a device that you do not think of as
being a computer"

• Characteristics include
• single purpose
• not end-user programmable
• designed for price - so minimum hardware necessary
• has power constraints - e.g. battery power
• has power dissipation constraints - e.g. no cooling fan
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What kind of computer?
• Microcontroller (MCU)

• small, low power, low performance, $0.20 to $10
• CPU, RAM, flash storage and peripherals all on one chip
• microwave oven, washing machine, remote sensor, ...

• Microprocessor (MPU)
• CPU, RAM, storage and peripherals on separate chips
• high power, high performance, high cost
• mostly x86 architecture

• System on Chip (SoC)
• MPU with on-chip peripherals
• mostly ARM architecture
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SBC, SoM and custom hardware

• Categories of Embedded Linux hardware
• SBC - Single Board Computer: ready-to-go, e.g. Raspberry Pi
• SoM - System-on-Module: SoC, plus supporting cicuitary integrated on

to a module which plugs into a custom designed base board.
• Custom hardware: board designed for a specific purpose
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A typical SoM

• NXP i.MX 8M SoC (4 core ARM
Cortex-A53 1.5 GHz)

• 1 to 8 GiB LPDDR4 RAM

• 8 to 64 GiB eMMC flash storage

• Vivante GPU

• Video Processor, Display controller, M4
MCU (built in)

• Ethernet, WiFi and Bluetooth

• HDMI and DSI display; CSI camera

• USB, PCIe
Phytec phyCORE-i.MX 8M
55 mm x 40 mm
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What kind of operating system?

• MCU
• really small MCUs run code bare metal
• mid and high end (32-bit) use a Real Time Operating System (RTOS)

such as Zephyr, NuttX, FreeRTOS, ...

• Embedded MPU and SoC
• Predominantly Embedded Linux

Why not Linux for MCU? Very few MCUs have virtual memory. Even if they do, they generally don’t have enough
RAM and storage to run Linux
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Devices running Embedded Linux

You use Embedded Linux every day
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Why Embedded Linux?

• Moore’s law: complex hardware requires complex software

• Free: you have the freedom to get and modify the code, making it easy to adapt and
extend

• Functional: supports a (very) wide range of hardware

• Up to date: the kernel has a 10 week release cycle

• Free: there is no charge for using the source code
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Minimum hardware spec

• 32 or 64-bit processor architecture with memory management unit (MMU)
• examples: ARM, x86, RISC-V

• At least 16 MiB RAM (*)

• At least 4 MiB storage (*), usually flash memory

(*) It is possible to build Linux systems with less RAM and flash, but it requires non-trivial
effort
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Open source ecosystem

The main players are:

• Open source community
• A loose alliance of developers, working on 1000’s of individual projects,

some funded by companies with a commercial interest

• SoC vendors
• Customise upstream code (e.g. Linux kernel, toolchain) to ensure it

works well on their platforms
• SBC and SoM vendors: further customisation

• Commercial embedded Linux vendors: offer support and services
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Pain points

• Lack of support for your particular hardware (always check with the manufacturer
before you design a component in)

• The rapid update cycle does not fit well with the slower cycle for embedded projects

• SoC/SoM/SBC vendors do not always push fixes and features as quickly as we
would like

Fundamentals of Embedded Linux 15 Copyright © 2011-2023, 2net Ltd



Distro or build from source?

• Distro, e.g. Debian or Ubuntu
• binary packages
• package manager, e.g. apt or dnf
• native compile

• Build from source
• bespoke operating system
• optimised for the hardware and task
• cross compile
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Distro: pluses

• vast number of packages, ready to install

• no compilation time

• little or no setup time - switch on and go
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Distro: minuses

• Requires hardware support
• only works out-of-the-box on commodity hardware such as PC or

Raspberry Pi

• Native development means compiling on a compatible machine
• OK for PC, but not scalable for Raspberry Pi

• Too big
• e.g. Ubuntu Core is 500 MB, but we only have 256MB flash memory

• Software update via package manager is not robust
• we need atomic update, e.g. the entire root filesystem image
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Distro: real world

• Common on embedded PC

• Common on embedded Raspberry Pi, e.g. Raspberry Pi Compute Modules

• Mostly low volume systems where human intervention can correct problems
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Boards need Board Support Packages
• The Board Support Package (BSP) is everything you need to run Linux on a

particular board

• A BSP consists of
• Bootloader
• Linux kernel
• Kernel drivers specific to the board
• Device tree (ARM)
• Libraries to support vendor-specific components such as accelerated

graphics
• Boot scripts and run-time configuration files
• Firmware binaries for on-chip peripherals(*)

(*) some of the on-chip peripherals are actually MCUs and require firmware to be loaded at boot-time, e.g. WiFi
and Bluetooth interfaces. Usually not open source
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BSP

ARM, RISC-V

• U-Boot source and configuration

• Linux source and configuration

• Device tree

• Recipes for Yocto or Buildroot

x86

• BIOS (part of motherboard)

• In some cases, kernel drivers for
non-generic or proprietary hardware(*)

(*) Mainline Linux is enough to boot and use most x86
hardware
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Elements of embedded Linux

Every embedded Linux project has these four elements:

• Toolchain: to compile all the other elements

• Bootloader: to initialise the board and load the kernel

• Kernel: to manage system resources

• Root filesystem: to run applications
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Toolchain

• toolchain = C/C++ compiler + linker + C library + debugger
• Compiler, linker and debugger: either GCC or Clang
• C library: either glibc or musl libc
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Types of toolchain

• Native toolchain
• Install and develop on the target

• Cross toolchain
• Build on development system, deploy on target
• Keeps target and development environments separate

Cross toolchains are the most common for embedded development
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Bootloader

• Open source bootloders include:
• Das U-Boot
• Barebox
• Little Kernel
• GRUB 2 (for X86 and X86_64)

• The role of the bootloader is to:
• Initialise the board
• Load a Linux kernel, kernel command line, device tree and initial ramfs
• System maintenance, e.g. flash system images, run diagnostics
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Kernel
• Non x86 boards seldom use mainline Linux

• Most cases, Kernel comes from the SoC vendor (not an ideal situation)

• Vendor kernel has
• initialisation code for the chip
• adaptation for chip features (e.g. Qualcomm energy-aware scheduling

(*))
• drivers for on chip peripherals ("IP blocks") - some will be proprietary,

shipped as binary kernel modules
• Vendors give code updates less often than mainline - maybe only one per yrear

• Vendors are not very good at pushing feature upstream

(*)A few years ago, the Qualcomm vendor kernel had 25,000 patches that were not in mainline
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Device tree

• The kernel needs to know details about hardware
• to decide which drivers to initialise
• to configure device parameters such as register addresses and IRQ

• Sources of information:
• firmware ACPI tables (x86 and ARM server)
• bus enumeration, e.g. PCI
• hard coded structures
• device tree (ARM, RICK-V, PPC, MIPS, and others)
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Root filesystem

• The user space part of the operating system

• The rootfs contains code to boot and start essential services
• init daemon
• other daemons started by init (network services, authentication services,

monitoring and logging services, etc)
• System libraries

• Configuration files

• ... and anything else essential to the system ...
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Embedded build systems

• Building the four elements by hand is time consuming

• Embedded build systems make it easy

Tool Notes
buildroot Small, menu-driven
OpenWrt A variant of Buildroot for network devices
OpenEmbedded General purpose
Yocto Project General purpose, wide industry support, complex
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Buildroot

• One of the first embedded build systems (2001)
• (OpenEmbedded started two years later)

• Web: https://buildroot.org

• As well as the root filesystem, can also build toolchain, bootloader, and kernel

• Architectures: ARM, RISC-V, x86, PowerPC, and many more...

• Packages: over 2500

• Board configs: over 250
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OpenEmbedded

• www.openembedded.org

• Based on recipes grouped together into meta layers

• The recipes are processed by a task scheduler named BitBake

• Recipes generate packages as RPM (default)

• In other words, OpenEmbedded is a tool to create a custom Linux distribution
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OpenEmbedded Core

• The core of OpenEmbedded, oe core, is the basis of several build systems
• OpenEmbedded itself
• Poky (part of the Yocto Project)
• ELDK (from Denx)
• Mentor Graphics Linux
• ... and others
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The Yocto Project

• The Yocto Project is a Linux Foundation project to maintain a build system for
embedded Linux

• Consists of
• oe-core, shared with OpenEmbedded
• BitBake: shared with OpenEmbedded
• Poky, the distribution metadata
• Reference BSPs including BeagleBone
• Documentation, which is extensive
• Toaster: a graphical user interface for Yocto
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Real-time

• Embedded computing is often associated with real-time processing

• Real-time = computation that must be completed before a deadline

• Examples:
• controlling the motion of a robot
• displaying a video stream

• Otherwise, the task is non-real-time

• Example:
• compiling a program: the result is just as good if it takes one second or

one minute
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Real-time metrics

t0 td

Jitter

missed
deadline

• To make a program real-time you need to reduce jitter by increasing determinism

• There are two things to consider:
• how long before the deadline? Shorter deadlines are harder to hit
• how much do you care about missing the deadline? The more you care,

the harder it is
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Soft or hard?

• Soft real-time
• Missing deadline is OK some of the time
• example: video processing: nobody will notice one or two dropped

frames

• Hard real-time
• Missing deadline is never acceptable: in extreme cases may cause

injury or death
• example: robot welding system
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Real-time Linux

Linus Torvalds, Kernel Summit 2006:

"Controlling a laser with Linux is crazy, but everyone in this room is crazy in his own way.
So if you want to use Linux to control an industrial welding laser, I have no problem with
your using PREEMPT_RT"
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Real-time in user space

Linux scheduling policies

• SCHED_NORMAL

• "Completely Fair Scheduler": tries to give each thread a fair share of
CPU time

• SCHED_FIFO

• Threads have static priorities between 1 and 99
• Scheduler runs SCHED_FIFO threads in priority order (99 is highest) first

• ... then runs SCHED_NORMAL threads

Note: SCHED_FIFO requires CAP_SYS_NICE, which requires root privileges by default
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Real-time in kernel space
• Linux is a source of non determinism, caused by scheduling latencies, interrupt

handling, kernel locks

• Enabling kernel preemption is a big help

• CONFIG_PREEMPT

• Reduces jitter to milliseconds
• enabled on most embedded kernels

• PREEMPT_RT

• Reduces jitter to 100s microseconds or less
• Only just been integrated into mainline Linux (after more than 10 years

of effort)

Note: increasing determinism by enabling preemption reduces throughput

Lesson: real time systems are not "fast" systems
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Software update

• Updates need to be atomic

• But, package managers (apt, dnf) are not atomic
• loose power at the wrong time leads to inconsistent set of packages and

so a bricked device
• Instead, embedded devices use Image update, which can be made atomic
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Software update

Commonly used update agents

• swupdate

• RAUC - Robust Auto-Update Controller

• Mendor.io (open source with commercial support)
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Working with open source licenses

• Open source licenses grant the freedom to modify and redistribute the source code

• Open source licenses can be divided into two groups
• "permissive", such as BSD, MIT and Apache
• "copyleft" - GPL (General Public License)

• The license should be part of each package of code

• typically in a file named LICENSE or COPYING

• also as a comment at the beginning of each source file
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Permissive licenses

• In general, these licenses state that you can create derivative works so long as you
• Don’t change copyright notices
• Don’t change the limited warranty notice

• You don’t need to distribute source code

I am not a lawyer. Please consult your legal department for clarification
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GPL v2

• Version 2 of the General Public License says
• you can create derivative works
• you must distribute source code to end users

• by public server
• or by "written offer": a promise to supply code on request

• you are creating a derivative work if you link with code or a library
licensed under GPL

Note: I am not a lawyer. Please consult your legal department for
clarification
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LGPL v2

• The lesser GPL (LGPL) is mostly applied to library code

• Allows linking to a library without creating a derivative work
• i.e. you can write proprietary programs that link dynamically with LGPL

libraries
• static linking is a more complex legal issue: don’t do it

Note: I am not a lawyer. Please consult your legal department for
clarification
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GPL v3 and LGPL v3

• Adds "The right to tinker"
• it must be possible to replace the GPL v3 components of any device
• also known as the "anti Tivoization clause"

• and protection against patent threats
• You must provide every recipient with any patent licenses necessary to

exercise the rights that the GPLv3 gives them
• and many other details...

Note: I am not a lawyer. Please consult your legal department for
clarification
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Secure boot and (L)GPL v3

• GPL3 with secure boot is possible so long as you have a "dev board" mode in which
an unsigned kernel can boot and run all GPL v3 runtime components, but not
(necessarily) any proprietary components

Here is a talk by Bradly Khun and Behan Webster on this topic:
https://events19.linuxfoundation.org/wp-content/uploads/2017/11/

Safely-Copylefted-Cars-Reexamining-GPLv3-Installation-Information-Requirements-ALS-Bradley-Kuhn-Behan-Webster-1.

pdf Note: I am not a lawyer. Please consult your legal department for
clarification
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Questions?

Slides at
https://2net.co.uk/slides/

fundamentals-of-embedded-linux-csimmonds-ndctechtown-2022.pdf

@2net_software

https://uk.linkedin.com/in/chrisdsimmonds/
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