
Why can’t my app open that file?
A deep dive into the Android app sandbox

Chris Simmonds

Droidcon London 2023

Why can’t my app open that file? 1 Copyright © 2011-2023, 2net Ltd

About Chris Simmonds

• Freelance consultant
• Author of Mastering Embedded Linux Programming
• Working with embedded Linux since 1999
• Android since 2009
• Speaker at many conferences and workshops
• Organiser of the AOSP and AAOS Meetup

"Looking after the Inner Penguin" blog at https://2net.co.uk/

Mastodon: @csimmonds@fosstodon.org https://fosstodon.org/@csimmonds

https://uk.linkedin.com/in/chrisdsimmonds/

Why can’t my app open that file? 2 Copyright © 2011-2023, 2net Ltd

https://2net.co.uk/
https://fosstodon.org/@csimmonds
https://uk.linkedin.com/in/chrisdsimmonds/

Objectives of this talk

• Describe the Android application sandbox: why and how

• Give some insight into the internal workings of Android

• Show how platform apps can bypass (some of) these restrictions

Why can’t my app open that file? 3 Copyright © 2011-2023, 2net Ltd

What files can my app access?

Standard applications can access:

• Private files in internal storage,

• Private files in external storage,

• Shared files in external storage,

• ... and that’s it

Anything else will result in a FileNotFoundException

Why can’t my app open that file? 4 Copyright © 2011-2023, 2net Ltd

What files can my app access?

Standard applications can access:

• Private files in internal storage,

• Private files in external storage,

• Shared files in external storage,

• ... and that’s it

Anything else will result in a FileNotFoundException

Why can’t my app open that file? 4 Copyright © 2011-2023, 2net Ltd

What files can my app access?

Standard applications can access:

• Private files in internal storage,

• Private files in external storage,

• Shared files in external storage,

• ... and that’s it

Anything else will result in a FileNotFoundException

Why can’t my app open that file? 4 Copyright © 2011-2023, 2net Ltd

What files can my app access?

Standard applications can access:

• Private files in internal storage,

• Private files in external storage,

• Shared files in external storage,

• ... and that’s it

Anything else will result in a FileNotFoundException

Why can’t my app open that file? 4 Copyright © 2011-2023, 2net Ltd

What files can my app access?

Standard applications can access:

• Private files in internal storage,

• Private files in external storage,

• Shared files in external storage,

• ... and that’s it

Anything else will result in a FileNotFoundException

Why can’t my app open that file? 4 Copyright © 2011-2023, 2net Ltd

What files can my app access?

Standard applications can access:

• Private files in internal storage,

• Private files in external storage,

• Shared files in external storage,

• ... and that’s it

Anything else will result in a FileNotFoundException

Why can’t my app open that file? 4 Copyright © 2011-2023, 2net Ltd

Good or bad?

Good, because

• improves system and user security: I can be sure that no other app can read
my bank account details

Bad, because

• makes it harder to share data between apps

• prevents apps from accessing useful system files

• a problem when designing dedicated embedded Android devices

Why can’t my app open that file? 5 Copyright © 2011-2023, 2net Ltd

The Android application sandbox

• The sandbox was part of the original design of Android, right from day 1

• Isolates applications from each other and from the operating system

• each application can access its own memory and files, and no others(*)

• The sandbox uses Linux kernel features for

• memory isolation, based on Linux processes virtual memory

• file isolation, based on Linux User IDs (UID), Group IDs (GID), and file mode

(*) in theory. There have been various loopholes, some of which get closed with each release

Why can’t my app open that file? 6 Copyright © 2011-2023, 2net Ltd

Linux processes

• A Linux process consists of

• an area of virtual memory that contains the code, data, stack and heap

• a Process Identifier (PID) that is allocated when the process is created

• one or more threads, each identified by a Thread Identifier (TID)

• an owner, indicated by a User Identifier (UID)

• a group owner, indicated by a Group Identifier (GID)

• zero or more supplementary GIDs

• The threads in a process share the address space, and so can share
memory, but they cannot access any memory outside the process

Why can’t my app open that file? 7 Copyright © 2011-2023, 2net Ltd

Sandbox: memory isolation

• Each Android app runs in a separate Linux process

• therefore, threads in one app cannot read or write memory from another app

T2

T1

T3

App

T3

T5

T4

T6

App

T2

Why can’t my app open that file? 8 Copyright © 2011-2023, 2net Ltd

Linux file permissions and DAC
Each file has an owner (UID), a group (GID), and a set of permission flags, called the mode

ls -l /
drwxr-xr-x 2 root root 4096 Jun 23 13:57 bin

group
owner
access mode flags
objet type

File mode flags
400 r--------
200 -w-------
100 --x------
040 ---r-----
020 ----w----
010 -----x---
004 ------r--
002 -------w-
001 --------x

Owner permissions

Group permissions

World permissions

To read, write or execute a file, a process must
match the mode flags

• if the UID of the process and file match, the
first 3 flags ("owner")

• if the GID of the process and file match, the
middle 3 flags ("group")

• otherwise, the last 3 flags ("world")

This mechanism is known as Discretionary Access Control, DAC

Why can’t my app open that file? 9 Copyright © 2011-2023, 2net Ltd

Sandbox: file isolation

• Android apps have Linux User IDs!

• Each app is assigned a unique Linux UID by Package Manager when
installed

• i.e. Android uses a Linux UID to identify an application (known as an appId in
14+)

• App UIDs are in the range 10,000 to 99,999 (so, a maximum of 89,999 apps
installed at once?); UIDs 0 to 9,999 are reserved for the system

• Each app has a place to put private files, e.g. /data/data/<package name>

• Linux DAC ensures that no other app can access those files

Note: since DAC is enforced by the kernel, NDK libraries have exactly the same restrictions as byte
code

Why can’t my app open that file? 10 Copyright © 2011-2023, 2net Ltd

Digression: AOSP build types

For some of the examples, I am using a userdebug build so that I can use a root
shell to show things that are not normally visible

The Android platform is built from the Android Open Source Project (AOSP)

AOSP allows three build types:

• user: locked-down, production build

• userdebug: includes su command for root-access, good for debugging

• eng: similar to userdebug, but root access is the default

$ prompt = normal shell
prompt = root shell

Why can’t my app open that file? 11 Copyright © 2011-2023, 2net Ltd

DAC in action
The user ID is recorded by Package Manager when the app was installed:

$ dumpsys package packages

[...]

Package [com.example.filedemo] (878585b):

appId=10089

[...]

At run-time the app has UID 10089

$ ps -An | grep filedemo

USER PID PPID VSZ RSS WCHAN ADDR S NAME

10089 2592 330 13817352 130652 0 0 S com.example.filedemo

The internal storage for the app has UID 10089 and GID 10089 for persistent files, and 20089 for
cached files

ls -ln /data/data/com.example.filedemo/

total 24

drwxrws--x 3 10089 20089 4096 2023-10-25 09:54 cache

drwxrws--x 2 10089 20089 4096 2023-10-24 19:49 code_cache

drwxrwx--x 2 10089 10089 4096 2023-10-25 09:54 files

Why can’t my app open that file? 12 Copyright © 2011-2023, 2net Ltd

supplementary groups

Find the PID of the app:

$ ps -A | grep filedemo

u0_a116 2071 357 13672104 117356 0 0 S com.example.filedemo

Look at the supplementary groups:

emulator64_x86_64:/ $ grep Groups /proc/2071/status

Groups: 9997 20116 50116

Meaning:

9997 shared between all apps in the same profile

20116 cached data

50116 apps in each user to share

Why can’t my app open that file? 13 Copyright © 2011-2023, 2net Ltd

What about Android Users?

• Jelly Bean 4.2 introduced multi-user Android on tablets; later releases
extended support to other devices including phones and cars

• With the multi-user UI enabled, each user identifies themselves when they
authenticate with the device (PIN, fingerprint, ...)

• But Linux UIDs are used already as appId, so how are real users
accommodated?

Why can’t my app open that file? 14 Copyright © 2011-2023, 2net Ltd

Android user ID?
• Android maps ranges of 100,000 Linux UIDs onto each Android user ID

(AUID)

• but note that AUID 1 to 9 are missing(*)

• UID = AUID*100000 + appId

• For example, the filedemo app running with AUID 10 and appId 10089:
$ ps -An | grep filedemo

USER PID PPID VSZ RSS WCHAN ADDR S NAME

1010089 3194 354 13725488 102688 0 0 S com.example.filedemo

Or, without the n option, ps shows PID symbolically as u0_a89
u0_a89 3194 354 13725488 102688 0 0 S com.example.filedemo

(*) I don’t know why

Why can’t my app open that file? 15 Copyright © 2011-2023, 2net Ltd

File isolation for multi-user

• We need to isolate different users of the same app from each other

• For each user (AUID) there is a separate private data storage area in
/data/user/

• For example,
/data/user/0/com.example.filedemo/files/myfile.txt

/data/user/10/com.example.filedemo/files/myfile.txt

• /data/user/0 is a link to /data/data for backwards compatibility
ls -ln /data/user/0/com.example.filedemo/files/myfile.txt

-rw-rw---- 1 10116 10116 13 2023-10-26 16:26 /data/user/0/com.example.filedemo/files/myfile.txt

ls -ln /data/user/10/com.example.filedemo/files/myfile.txt

-rw-rw---- 1 1010116 1010116 13 2023-10-26 16:32 /data/user/10/com.example.filedemo/files/myfile.txt

Why can’t my app open that file? 16 Copyright © 2011-2023, 2net Ltd

SELinux enters the picture

• Basic DAC permissions leave some loopholes

• So, we need a layer of Mandatory Access Control (MAC)

• Linux supports several MAC implementations: Android uses SELinux

• SELinux = Security Enhanced Linux, written by the NSA

• deployed in full enforcing mode since Android 5

• Note that DAC and MAC work together: a process has to pass both layers of
security before it can access a file or other resource

Why can’t my app open that file? 17 Copyright © 2011-2023, 2net Ltd

SELinux context

• SELinux contexts are of the form user:role:type:sensitivity[:category]

• Each process has an SELinux context, shown with ps -Z:
$ ps -AZ

LABEL USER PID PPID S NAME

u:r:platform_app:s0:c512,c768 u0_a98 753 373 S com.android.systemui

u:r:priv_app:s0:c512,c768 u0_a91 1090 373 S com.android.launcher3

u:r:system_app:s0 system 1890 373 S com.android.localtransport

u:r:untrusted_app_25:s0:c512,c768 u0_a86 2282 373 S com.android.deskclock

• Each file also has an SELinux context ls -Z:
ls -Z1 /data/user/0/com.example.filedemo/

u:object_r:app_data_file:s0:c116,c256,c512,c768 cache

u:object_r:app_data_file:s0:c116,c256,c512,c768 code_cache

u:object_r:app_data_file:s0:c116,c256,c512,c768 files

Why can’t my app open that file? 18 Copyright © 2011-2023, 2net Ltd

SELinux policy

• (Most) Android apps belong to one of these SELinux types

• untrusted_app: a regular app, including all user-installed apps

• platform_app: a pre-installed app, signed with the platform keys

• system_app: a pre-installed app with UID = 1000 (system)

• priv_app: a pre-installed app which can be granted permissions with protection
level signature|privileged

Why can’t my app open that file? 19 Copyright © 2011-2023, 2net Ltd

SELinux policy

• SELinux policy is coded in AOSP: you can’t change it at runtime

• The policy for each type is in a type enforcement (.te) file

Here is an example of the policy for an untrusted_app in untrusted_app.te

Some apps ship with shared libraries and binaries that they write out

to their sandbox directory and then execute.

allow untrusted_app_all privapp_data_file:file { r_file_perms execute };

allow untrusted_app_all app_data_file:file { r_file_perms execute };

Why can’t my app open that file? 20 Copyright © 2011-2023, 2net Ltd

SELinux policy for untrusted_app

• For untrusted_app, the policy depends on the targetSdkVersion:

Policy file targetSdkVersion range
untrusted_app.te 34 and later
untrusted_app_32.te from 32 to 33
untrusted_app_30.te from 30 to 31
untrusted_app_29.te 29 only
untrusted_app_27.te from 26 to 27
untrusted_app_25.te 25 and earlier

Why can’t my app open that file? 21 Copyright © 2011-2023, 2net Ltd

Changes over the years

• API level 19 and higher: app doesn’t need to request any storage-related
permissions to access app-specific directories within external storage. The
files stored in these directories are removed when your app is uninstalled

• API level 28 or lowerr: your app can access the app-specific files that belong
to other apps, provided that your app has the appropriate storage permissions

• API level 29 and higher: apps are given scoped access into external storage,
or scoped storage, by default. When scoped storage is enabled, apps cannot
access the app-specific directories that belong to other apps

• API level 30 and higher: apps cannot create their own app-specific directory
on external storage

https://developer.android.com/training/data-storage/app-specific

Why can’t my app open that file? 22 Copyright © 2011-2023, 2net Ltd

https://developer.android.com/training/data-storage/app-specific

Breaking the rules: platform apps

• You can break the rules if you are the platform developer

• Usecases

• (mass market) platform developer/integrator for phone/TV/Automotive OEM

• (specialized hardware) embedded Android devices - smart white boards, room
access/booking systems, test and measurement, PoS, Advertising

Why can’t my app open that file? 23 Copyright © 2011-2023, 2net Ltd

Platform apps

• Platform key is the key used to sign /system/framework/framework-res.apk

• Any app signed with the same key becomes a platform_app

• Platform apps can use low-level platform APIs by adding platform_apis: true,

and removing sdk_version

android_app {

[...]

certificate: "platform",

platform_apis: true,

}

Why can’t my app open that file? 24 Copyright © 2011-2023, 2net Ltd

System apps

• A system app is a platform app with UID system (1000)

• Just add android:sharedUserId="android.uid.system" to AndroidManifest.xml

• SELinux domain system_app

• Can access files and resources with UID and GID system

Why can’t my app open that file? 25 Copyright © 2011-2023, 2net Ltd

Privileged apps

• A privileged app is a platform app with the privileged flag set in Android.bp

privileged: true,

• SELinux domain is priv_app

• Privileged apps can be granted permissions with protection level
"signature|privileged"

Why can’t my app open that file? 26 Copyright © 2011-2023, 2net Ltd

Persistent apps

• A platform app can be made a persistent app by adding
android:persistent="true" to AndroidManifest.xml

• Persistent apps are started early: before the HOME activity is started, and
way before BOOT_COMPLETED

• Persistent apps are restarted if they crash

• Examples: SystemUI, phone

Why can’t my app open that file? 27 Copyright © 2011-2023, 2net Ltd

The AOSP and AAOS Meetup

If you are interested in these low-level
details of Android then you might be
interested in this meetup group

On-line meetup up every 2 months - next is Wednesday 15th November

Sign up: https://www.meetup.com/the-aosp-and-aaos-meetup/

Details of past meetups, including slides and videos:
https://aospandaaos.github.io/

Why can’t my app open that file? 28 Copyright © 2011-2023, 2net Ltd

https://www.meetup.com/the-aosp-and-aaos-meetup/
https://aospandaaos.github.io/

Questions?

Slides: https://2net.co.uk/slides/sandbox-csimmonds-droidcon-london-2023.pdf

Mastodon: @csimmonds@fosstodon.org https://fosstodon.org/@csimmonds

https://uk.linkedin.com/in/chrisdsimmonds/

Why can’t my app open that file? 29 Copyright © 2011-2023, 2net Ltd

https://2net.co.uk/slides/sandbox-csimmonds-droidcon-london-2023.pdf
https://fosstodon.org/@csimmonds
https://uk.linkedin.com/in/chrisdsimmonds/

	Conclusion

