Why can’t my app open that file?
A deep dive into the Android app sandbox

Chris Simmonds

Droidcon London 2023

“net

Why can’t my app open that file? 1 Copyright © 2011-2023, 2net Ltd

About Chris Simmonds

* Freelance consultant

Author of Mastering Embedded Linux Programming
Working with embedded Linux since 1999

Android since 2009

Speaker at many conferences and workshops
Organiser of the AOSP and AAOS Meetup

"Looking after the Inner Penguin” blog at https://2net.co.uk/

Mastodon: @csimmonds@fosstodon.org https://fosstodon. org/@csimmonds

m https://uk.linkedin.com/in/chrisdsimmonds/

“net

Why can’t my app open that file? 2 Copyright © 2011-2023, 2net Ltd

https://2net.co.uk/
https://fosstodon.org/@csimmonds
https://uk.linkedin.com/in/chrisdsimmonds/

Objectives of this talk

e Describe the Android application sandbox: why and how
¢ Give some insight into the internal workings of Android

e Show how platform apps can bypass (some of) these restrictions

Why can’t my app open that file? 3 Copyright © 2011-2023, 2net Ltd

What files can my app access?

Standard applications can access:

Why can’t my app open that file? 4 Copyright © 2011-2023, 2net Ltd

What files can my app access?

Standard applications can access:

¢ Private files in internal storage,

Why can’t my app open that file? 4 Copyright © 2011-2023, 2net Ltd

What files can my app access?

Standard applications can access:
¢ Private files in internal storage,

e Private files in external storage,

Why can’t my app open that file? 4 Copyright © 2011-2023, 2net Ltd

What files can my app access?

Standard applications can access:
¢ Private files in internal storage,
e Private files in external storage,

e Shared files in external storage,

Why can’t my app open that file?

Copyright © 2011-2023, 2net Ltd

What files can my app access?

Standard applications can access:
¢ Private files in internal storage,
e Private files in external storage,
e Shared files in external storage,

e ... andthat’s it

Why can’t my app open that file? 4 Copyright © 2011-2023, 2net Ltd

What files can my app access?

Standard applications can access:
¢ Private files in internal storage,
e Private files in external storage,
e Shared files in external storage,
e ... andthat’s it

Anything else will result in a FileNotFoundException

Why can’t my app open that file? 4 Copyright © 2011-2023, 2net Ltd

Good or bad?

Good, because

e improves system and user security: | can be sure that no other app can read
my bank account details

Bad, because

° makes it harder to share data between apps
® prevents apps from accessing useful system files

® a problem when designing dedicated embedded Android devices

Why can’t my app open that file? 5 Copyright © 2011-2023, 2net Ltd

The Android application sandbox

e The sandbox was part of the original design of Android, right from day 1
¢ |solates applications from each other and from the operating system

® each application can access its own memory and files, and no others(*)
* The sandbox uses Linux kernel features for

® memory isolation, based on Linux processes virtual memory

e file isolation, based on Linux User IDs (UID), Group IDs (GID), and file mode

(*) in theory. There have been various loopholes, some of which get closed with each release

Why can’t my app open that file? 6 Copyright © 2011-2023, 2net Ltd

Linux processes

¢ A Linux process consists of

an area of virtual memory that contains the code, data, stack and heap
a Process Identifier (PID) that is allocated when the process is created
one or more threads, each identified by a Thread Identifier (TID)

an owner, indicated by a User Identifier (UID)

a group owner, indicated by a Group Identifier (GID)

zero or more supplementary GIDs

e The threads in a process share the address space, and so can share
memory, but they cannot access any memory outside the process

Why can’t my app open that file? 7 Copyright © 2011-2023, 2net Ltd

Sandbox: memory isolation

e Each Android app runs in a separate Linux process

¢ therefore, threads in one app cannot read or write memory from another app

Why can’t my app open that file? 8 Copyright © 2011-2023, 2net Ltd

Linux file permissions and DAC

Each file has an owner (UID), a group (GID), and a set of permission flags, called the mode

#1s -1/
drwxr-xr-x 2 root root 4096 Jun 23 13:57 bin
| | [
group
owner
access mode flags
objet type
File mode flags To read, write or execute a file, a process must
400 r-------- o match the mode flags
200 -w------- Owner permissions)
100 --X------ ¢ if the UID of the process and file match, the
040 ---r----- ; " "
020 ----w---- } Group permissions first 3 flags ("owner’)
gég _____ o e if the GID of the process and file match, the
...... r-- H " "
002 ------- w- } World permissions middle 3 flags ("group”)
001 -------- X

* otherwise, the last 3 flags ("world")

This mechanism is known as Discretionary Access Control, DAC

Why can’t my app open that file? 9 Copyright © 2011-2023, 2net Ltd

Sandbox: file isolation

¢ Android apps have Linux User IDs!

e Each app is assigned a unique Linux UID by Package Manager when
installed

® j.e. Android uses a Linux UID to identify an application (known as an appld in
14+)

® App UIDs are in the range 10,000 to 99,999 (so, a maximum of 89,999 apps
installed at once?); UIDs 0 to 9,999 are reserved for the system

e Each app has a place to put private files, e.9. /data/data/<package name>

e Linux DAC ensures that no other app can access those files

Note: since DAC is enforced by the kernel, NDK libraries have exactly the same restrictions as byte
code

“net

Why can’t my app open that file? 10 Copyright © 2011-2023, 2net Ltd

Digression: AOSP build types

For some of the examples, | am using a userdebug build so that | can use a root
shell to show things that are not normally visible

The Android platform is built from the Android Open Source Project (AOSP)
AOSP allows three build types:

e user: locked-down, production build

¢ userdebug: includes su command for root-access, good for debugging

e eng: similar to userdebug, but root access is the default

$ prompt = normal shell
prompt = root shell

“net

Why can’t my app open that file? 1 Copyright © 2011-2023, 2net Ltd

DAC in action

The user ID is recorded by Package Manager when the app was installed:

$ dumpsys package packages

[...]

Package [com.example.filedemo] (878585b):
appId=10089

[...]

At run-time the app has UID 10089

$ ps -An | grep filedemo
USER PID PPID VszZ RSS WCHAN ADDR S NAME
10089 2692 330 13817352 130652 0 0 S com.example.filedemo

The internal storage for the app has UID 10089 and GID 10089 for persistent files, and 20089 for
cached files

1s -1n /data/data/com.example.filedemo/

total 24

drwxrws--x 3 10089 20089 4096 2023-10-25 09:54 cache
drwxrws--x 2 10089 20089 4096 2023-10-24 19:49 code_cache
druxrwx--x 2 10089 10089 4096 2023-10-25 09:54 files

Znet

Why can’t my app open that file? 12 Copyright © 2011-2023, 2net Ltd

supplementary groups

Find the PID of the app:

$ ps -A | grep filedemo
u0_al1é 2071 357 13672104 117356 0 0 S com.example.filedemo

Look at the supplementary groups:

emulator64_x86_64:/ $ grep Groups /proc/2071/status
Groups: 9997 20116 50116

Meaning:

9997 shared between all apps in the same profile
20116 cached data

50116 apps in each user to share

Why can’t my app open that file? 13 Copyright © 2011-2023, 2net Ltd

What about Android Users?

e Jelly Bean 4.2 introduced multi-user Android on tablets; later releases
extended support to other devices including phones and cars

e With the multi-user Ul enabled, each user identifies themselves when they
authenticate with the device (PIN, fingerprint, ...)

e But Linux UIDs are used already as appld, so how are real users
accommodated?

Why can’t my app open that file? 14 Copyright © 2011-2023, 2net Ltd

Android user ID?

e Android maps ranges of 100,000 Linux UIDs onto each Android user ID
(AUID)

® but note that AUID 1 to 9 are missing(*)
e UID = AUID*100000 + appld
¢ For example, the filedemo app running with AUID 10 and appld 10089:

$ ps -An | grep filedemo
USER PID PPID VSZ RSS WCHAN ADDR S NAME
1010089 3194 354 13725488 102688 0 0 S com.example.filedemo

Or, without the n option, ps shows PID symbolically as u0_a89

u0_a89 3194 354 13725488 102688 0 0 S com.example.filedemo

(*) I don’t know why

“net

Why can’t my app open that file? 15 Copyright © 2011-2023, 2net Ltd

File isolation for multi-user

¢ We need to isolate different users of the same app from each other

e For each user (AUID) there is a separate private data storage area in
/data/user/

e For example,

/data/user/0/com.example.filedemo/files/myfile.txt
/data/user/10/com.example.filedemo/files/myfile.txt

® /data/user/0 iS a link to /data/data for backwards compatibility

1s -1n /data/user/0/com.example.filedemo/files/myfile.txt

-rw-rw---- 1 10116 10116 13 2023-10-26 16:26 /data/user/0/com.example.filedemo/files/myfile.txt
1s -1n /data/user/10/com.example.filedemo/files/myfile.txt
-rw-rw---- 1 1010116 1010116 13 2023-10-26 16:32 /data/user/10/com.example.filedemo/files/myfile.txt

“net

Why can’t my app open that file? 16 Copyright © 2011-2023, 2net Ltd

SELinux enters the picture

Basic DAC permissions leave some loopholes

So, we need a layer of Mandatory Access Control (MAC)

Linux supports several MAC implementations: Android uses SELinux
e SELinux = Security Enhanced Linux, written by the NSA

® deployed in full enforcing mode since Android 5

Note that DAC and MAC work together: a process has to pass both layers of
security before it can access a file or other resource

Why can’t my app open that file? 17 Copyright © 2011-2023, 2net Ltd

SELinux context

e SELinux contexts are of the form user:role:type:sensitivity[:category]

e Each process has an SELinux context, shown with ps -z:

$ ps -AZ

LABEL USER
u:r:platform_app:s0:¢c512,c768 u0_a98
u:r:priv_app:s0:c512,c768 u0_a91
u:r:system_app:s0 system
u:r:untrusted_app_25:50:¢512,c768 u0_a86

£ £ & ®

PID
753
1090
1890
2282

PPID
373
373
373
373

e Each file also has an SELinux context 1s -z:

1s -Z1 /data/user/0/com.example.filedemo/

:object_r:app_data_file:s0:c116,c256,c512,c768 cache
:object_r:app_data_file:s0:c116,c256,c512,c768 code_cache
:object_r:app_data_file:s0:c116,¢256,c512,c768 files

nwnwnwnwn

NAME

com.android.systemui
com.android.launcher3
com.android.localtransport
com.android.deskclock

Why can’t my app open that file?

18

Copyright © 2011-2023, 2net Ltd

SELinux policy

¢ (Most) Android apps belong to one of these SELinux types
® untrusted_app: a regular app, including all user-installed apps
® platform_app: a pre-installed app, signed with the platform keys
® system_app: a pre-installed app with UID = 1000 (system)

® priv_app: a pre-installed app which can be granted permissions with protection
level signature|privileged

Why can’t my app open that file? 19 Copyright © 2011-2023, 2net Ltd

SELinux policy

e SELinux policy is coded in AOSP: you can’t change it at runtime

* The policy for each type is in a type enforcement (.te) file

Here is an example of the policy for an untrusted_app in untrusted_app.te

Some apps ship with shared libraries and binaries that they write out
to their sandbox directory and then execute.

allow untrusted_app_all privapp_data_file:file { r_file_perms execute };
allow untrusted_app_all app_data_file:file { r_file_perms execute };

Why can’t my app open that file? 20 Copyright © 2011-2023, 2net Ltd

SELinux policy for untrusted_app

® For untrusted_app, the policy depends on the targetSdkVersion:

Policy file

untrusted_app.te

untrusted_app_32.te
untrusted_app_30.te
untrusted_app_29.te
untrusted_app_27.te
untrusted_app_25.te

targetSdkVersion range
34 and later

from 32 to 33

from 30 to 31

29 only

from 26 to 27

25 and earlier

Why can’t my app open that file? 21

Copyright © 2011-2023, 2net Ltd

Changes over the years

e APl level 19 and higher: app doesn’t need to request any storage-related
permissions to access app-specific directories within external storage. The
files stored in these directories are removed when your app is uninstalled

e API level 28 or lowerr: your app can access the app-specific files that belong
to other apps, provided that your app has the appropriate storage permissions

e API level 29 and higher: apps are given scoped access into external storage,
or scoped storage, by default. When scoped storage is enabled, apps cannot
access the app-specific directories that belong to other apps

e API level 30 and higher: apps cannot create their own app-specific directory
on external storage

https://developer.android.com/training/data-storage/app-specific

“net

Why can’t my app open that file? 22 Copyright © 2011-2023, 2net Ltd

https://developer.android.com/training/data-storage/app-specific

Breaking the rules: platform apps

® You can break the rules if you are the platform developer
e Usecases
® (mass market) platform developer/integrator for phone/TV/Automotive OEM

® (specialized hardware) embedded Android devices - smart white boards, room
access/booking systems, test and measurement, PoS, Advertising

Why can’t my app open that file? 23 Copyright © 2011-2023, 2net Ltd

Platform apps

e Platform key is the key used to sign /system/framework/framework-res.apk
¢ Any app signed with the same key becomes a platform_app

¢ Platform apps can use low-level platform APIs by adding platform_apis: true,
and removing sdk_version

android_app {

[...]
certificate: "platform",
platform_apis: true,

Why can’t my app open that file? 24 Copyright © 2011-2023, 2net Ltd

System apps

A system app is a platform app with UID system (1000)

Just add android:sharedUserId="android.uid.system" {0 AndroidManifest.xml

SELinux domain system_app

e Can access files and resources with UID and GID system

Why can’t my app open that file? 25 Copyright © 2011-2023, 2net Ltd

Privileged apps

¢ A privileged app is a platform app with the privileged flag set in Android.bp
privileged: true,
e SELinux domain is priv_app

* Privileged apps can be granted permissions with protection level

"signature|privileged"

Why can’t my app open that file? 26 Copyright © 2011-2023, 2net Ltd

Persistent apps

A platform app can be made a persistent app by adding

android:persistent="true" 10 AndroidManifest.xml

Persistent apps are started early: before the HOME activity is started, and
way before BooT_COMPLETED

Persistent apps are restarted if they crash

Examples: SystemUI, phone

Why can’t my app open that file? 27 Copyright © 2011-2023, 2net Ltd

The AOSP and AAOS Meetup

#A /?‘ l"
If you are interested in these low-level "‘“ “
details of Android then you might be ‘)’ﬂ'

interested in this meetup group UQUJU

On-line meetup up every 2 months - next is Wednesday 15th November
Sign up: https://www.meetup.com/the-aosp-and-aaos-meetup/

Details of past meetups, including slides and videos:
https://aospandaaos.github.io/

“net

Why can’t my app open that file? 28 Copyright © 2011-2023, 2net Ltd

https://www.meetup.com/the-aosp-and-aaos-meetup/
https://aospandaaos.github.io/

Questions?

Slides: https://2net.co.uk/slides/sandbox-csimmonds-droidcon-london-2023.pdf

Mastodon: @csimmonds@fosstodon.org https://fosstodon.org/@csimmonds

m https://uk.linkedin.com/in/chrisdsimmonds/

Why can’t my app open that file? 29 Copyright © 2011-2023, 2net Ltd

https://2net.co.uk/slides/sandbox-csimmonds-droidcon-london-2023.pdf
https://fosstodon.org/@csimmonds
https://uk.linkedin.com/in/chrisdsimmonds/

	Conclusion

