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Objectives of this talk

e Describe the Android application sandbox: why and how
¢ Give some insight into the internal workings of Android

e Show how platform apps can bypass (some of) these restrictions
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What files can my app access?

Standard applications can access:
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What files can my app access?

Standard applications can access:
¢ Private files in internal storage,
e Private files in external storage,
e Shared files in external storage,
e ... andthat’s it

Anything else will result in a FileNotFoundException
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Good or bad?

Good, because

e improves system and user security: | can be sure that no other app can read
my bank account details

Bad, because

° makes it harder to share data between apps
® prevents apps from accessing useful system files

® a problem when designing dedicated embedded Android devices
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The Android application sandbox

e The sandbox was part of the original design of Android, right from day 1
¢ |solates applications from each other and from the operating system

® each application can access its own memory and files, and no others(*)
* The sandbox uses Linux kernel features for

® memory isolation, based on Linux processes virtual memory

e file isolation, based on Linux User IDs (UID), Group IDs (GID), and file mode

(*) in theory. There have been various loopholes, some of which get closed with each release
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Linux processes

¢ A Linux process consists of

an area of virtual memory that contains the code, data, stack and heap
a Process Identifier (PID) that is allocated when the process is created
one or more threads, each identified by a Thread Identifier (TID)

an owner, indicated by a User Identifier (UID)

a group owner, indicated by a Group Identifier (GID)

zero or more supplementary GIDs

e The threads in a process share the address space, and so can share
memory, but they cannot access any memory outside the process
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Sandbox: memory isolation

e Each Android app runs in a separate Linux process

¢ therefore, threads in one app cannot read or write memory from another app
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Linux file permissions and DAC

Each file has an owner (UID), a group (GID), and a set of permission flags, called the mode

#1s -1/
drwxr-xr-x 2 root root 4096 Jun 23 13:57 bin
| | [
group
owner
access mode flags
objet type
File mode flags To read, write or execute a file, a process must
400 r-------- o match the mode flags
200 -w------- Owner permissions )
100 --X------ ¢ if the UID of the process and file match, the
040 ---r----- ; " "
020 ----w---- } Group permissions first 3 flags ("owner’)
gég _____ o e if the GID of the process and file match, the
...... r-- H " "
002 ------- w- } World permissions middle 3 flags ("group”)
001 -------- X

* otherwise, the last 3 flags ("world")

This mechanism is known as Discretionary Access Control, DAC
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Sandbox: file isolation

¢ Android apps have Linux User IDs!

e Each app is assigned a unique Linux UID by Package Manager when
installed

® j.e. Android uses a Linux UID to identify an application (known as an appld in
14+)

® App UIDs are in the range 10,000 to 99,999 (so, a maximum of 89,999 apps
installed at once?); UIDs 0 to 9,999 are reserved for the system

e Each app has a place to put private files, e.9. /data/data/<package name>

e Linux DAC ensures that no other app can access those files

Note: since DAC is enforced by the kernel, NDK libraries have exactly the same restrictions as byte
code
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Digression: AOSP build types

For some of the examples, | am using a userdebug build so that | can use a root
shell to show things that are not normally visible

The Android platform is built from the Android Open Source Project (AOSP)
AOSP allows three build types:

e user: locked-down, production build

¢ userdebug: includes su command for root-access, good for debugging

e eng: similar to userdebug, but root access is the default

$ prompt = normal shell
# prompt = root shell
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DAC in action

The user ID is recorded by Package Manager when the app was installed:

$ dumpsys package packages

[...]

Package [com.example.filedemo] (878585b):
appId=10089

[...]

At run-time the app has UID 10089

$ ps -An | grep filedemo
USER PID PPID VszZ RSS WCHAN ADDR S NAME
10089 2692 330 13817352 130652 0 0 S com.example.filedemo

The internal storage for the app has UID 10089 and GID 10089 for persistent files, and 20089 for
cached files

# 1s -1n /data/data/com.example.filedemo/

total 24

drwxrws--x 3 10089 20089 4096 2023-10-25 09:54 cache
drwxrws--x 2 10089 20089 4096 2023-10-24 19:49 code_cache
druxrwx--x 2 10089 10089 4096 2023-10-25 09:54 files
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supplementary groups

Find the PID of the app:

$ ps -A | grep filedemo
u0_al1é 2071 357 13672104 117356 0 0 S com.example.filedemo

Look at the supplementary groups:

emulator64_x86_64:/ $ grep Groups /proc/2071/status
Groups: 9997 20116 50116

Meaning:

9997 shared between all apps in the same profile
20116 cached data

50116 apps in each user to share
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What about Android Users?

e Jelly Bean 4.2 introduced multi-user Android on tablets; later releases
extended support to other devices including phones and cars

e With the multi-user Ul enabled, each user identifies themselves when they
authenticate with the device (PIN, fingerprint, ...)

e But Linux UIDs are used already as appld, so how are real users
accommodated?
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Android user ID?

e Android maps ranges of 100,000 Linux UIDs onto each Android user ID
(AUID)

® but note that AUID 1 to 9 are missing(*)
e UID = AUID*100000 + appld
¢ For example, the filedemo app running with AUID 10 and appld 10089:

$ ps -An | grep filedemo
USER PID PPID VSZ RSS WCHAN ADDR S NAME
1010089 3194 354 13725488 102688 0 0 S com.example.filedemo

Or, without the n option, ps shows PID symbolically as u0_a89

u0_a89 3194 354 13725488 102688 0 0 S com.example.filedemo

(*) I don’t know why
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File isolation for multi-user

¢ We need to isolate different users of the same app from each other

e For each user (AUID) there is a separate private data storage area in
/data/user/

e For example,

/data/user/0/com.example.filedemo/files/myfile.txt
/data/user/10/com.example.filedemo/files/myfile.txt

® /data/user/0 iS a link to /data/data for backwards compatibility

# 1s -1n /data/user/0/com.example.filedemo/files/myfile.txt

-rw-rw---- 1 10116 10116 13 2023-10-26 16:26 /data/user/0/com.example.filedemo/files/myfile.txt
# 1s -1n /data/user/10/com.example.filedemo/files/myfile.txt
-rw-rw---- 1 1010116 1010116 13 2023-10-26 16:32 /data/user/10/com.example.filedemo/files/myfile.txt
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SELinux enters the picture

Basic DAC permissions leave some loopholes

So, we need a layer of Mandatory Access Control (MAC)

Linux supports several MAC implementations: Android uses SELinux
e SELinux = Security Enhanced Linux, written by the NSA

® deployed in full enforcing mode since Android 5

Note that DAC and MAC work together: a process has to pass both layers of
security before it can access a file or other resource
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SELinux context

e SELinux contexts are of the form user:role:type:sensitivity[:category]

e Each process has an SELinux context, shown with ps -z:

$ ps -AZ

LABEL USER
u:r:platform_app:s0:¢c512,c768 u0_a98
u:r:priv_app:s0:c512,c768 u0_a91
u:r:system_app:s0 system
u:r:untrusted_app_25:50:¢512,c768 u0_a86

£ £ & ®

PID
753
1090
1890
2282

PPID
373
373
373
373

e Each file also has an SELinux context 1s -z:

1s -Z1 /data/user/0/com.example.filedemo/

:object_r:app_data_file:s0:c116,c256,c512,c768 cache
:object_r:app_data_file:s0:c116,c256,c512,c768 code_cache
:object_r:app_data_file:s0:c116,¢256,c512,c768 files

nwnwnwnwn

NAME

com.android.systemui
com.android.launcher3
com.android.localtransport
com.android.deskclock
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SELinux policy

¢ (Most) Android apps belong to one of these SELinux types
® untrusted_app: a regular app, including all user-installed apps
® platform_app: a pre-installed app, signed with the platform keys
® system_app: a pre-installed app with UID = 1000 (system)

® priv_app: a pre-installed app which can be granted permissions with protection
level signature|privileged
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SELinux policy

e SELinux policy is coded in AOSP: you can’t change it at runtime

* The policy for each type is in a type enforcement (.te) file

Here is an example of the policy for an untrusted_app in untrusted_app.te

# Some apps ship with shared libraries and binaries that they write out
# to their sandbox directory and then execute.

allow untrusted_app_all privapp_data_file:file { r_file_perms execute };
allow untrusted_app_all app_data_file:file { r_file_perms execute };
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SELinux policy for untrusted_app

® For untrusted_app, the policy depends on the targetSdkVersion:

Policy file

untrusted_app.te

untrusted_app_32.te
untrusted_app_30.te
untrusted_app_29.te
untrusted_app_27.te
untrusted_app_25.te

targetSdkVersion range
34 and later

from 32 to 33

from 30 to 31

29 only

from 26 to 27

25 and earlier
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Changes over the years

e APl level 19 and higher: app doesn’t need to request any storage-related
permissions to access app-specific directories within external storage. The
files stored in these directories are removed when your app is uninstalled

e API level 28 or lowerr: your app can access the app-specific files that belong
to other apps, provided that your app has the appropriate storage permissions

e API level 29 and higher: apps are given scoped access into external storage,
or scoped storage, by default. When scoped storage is enabled, apps cannot
access the app-specific directories that belong to other apps

e API level 30 and higher: apps cannot create their own app-specific directory
on external storage

https://developer.android.com/training/data-storage/app-specific
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Breaking the rules: platform apps

® You can break the rules if you are the platform developer
e Usecases
® (mass market) platform developer/integrator for phone/TV/Automotive OEM

® (specialized hardware) embedded Android devices - smart white boards, room
access/booking systems, test and measurement, PoS, Advertising
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Platform apps

e Platform key is the key used to sign /system/framework/framework-res.apk
¢ Any app signed with the same key becomes a platform_app

¢ Platform apps can use low-level platform APIs by adding platform_apis: true,
and removing sdk_version

android_app {

[...]
certificate: "platform",
platform_apis: true,
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System apps

A system app is a platform app with UID system (1000)

Just add android:sharedUserId="android.uid.system" {0 AndroidManifest.xml

SELinux domain system_app

e Can access files and resources with UID and GID system
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Privileged apps

¢ A privileged app is a platform app with the privileged flag set in Android.bp
privileged: true,
e SELinux domain is priv_app

* Privileged apps can be granted permissions with protection level

"signature|privileged"
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Persistent apps

A platform app can be made a persistent app by adding

android:persistent="true" 10 AndroidManifest.xml

Persistent apps are started early: before the HOME activity is started, and
way before BooT_COMPLETED

Persistent apps are restarted if they crash

Examples: SystemUI, phone
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The AOSP and AAOS Meetup

#A /?‘ l"
If you are interested in these low-level "‘“ “
details of Android then you might be ‘)’ﬂ'

interested in this meetup group UQUJU

On-line meetup up every 2 months - next is Wednesday 15th November
Sign up: https://www.meetup.com/the-aosp-and-aaos-meetup/

Details of past meetups, including slides and videos:
https://aospandaaos.github.io/
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Questions?

Slides: https://2net.co.uk/slides/sandbox-csimmonds-droidcon-london-2023.pdf

Mastodon: @csimmonds@fosstodon.org https://fosstodon.org/@csimmonds

m https://uk.linkedin.com/in/chrisdsimmonds/
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